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ABSTRACT

Crewmembers in United States Air Force Tactical Fighter Squadrons (TFS) accomplish a

complex combination of flying and ground training to meet peacetime and wartime contingency

tasking. Manual scheduling systems used today often result in crewmembers not accomplishing

required training or receiving training in an inefficient manner. Flying $20 million supersonic

aircraft the consequences can be expensive and fatal. The scheduling problem facing the TFS can

be shown to be NP hard. A heuristic is presented which offem a solution to this scheduling prob-

lem. A series of transportation subproblems are solved using a primal network simplex code. At

each stage, solutions are linked with previous solutions until a schedule is formed or no feasible

solution can be found for the remaining jobs. A swap routine then attempts to find a feasible solu-

tion if one does not currently exist. The algorithm then continues into an improvement routine in

an attempt to find a solution with an increased objective value. This approach was chosen due to

a desire to develop a system fast enough to be interactive on a daily basis yet self contained at the

-squadron level. The results seem promising in providing a typical USAF TS with training

results superior to those accomplished currently.
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INTRODUCTION

A typical United States Air Force Tactical Fighter Squadron (TFS) has 40-80 crewmembers

and 26 aircraft. In addition to conducting daily training missions, crewmembers must undergo

intensive ground training to prepare for the multi-faceted threat which they may face and to main-

tain their competency of the systems on board what are increasingly complex aircraft. These

tasks, in conjunction with routine administrative functions, form a tremendous burden on the

crewmember's time and are difficult to schedule efficiently. The consequences of missed training

can be severe. When flying at supersonic speeds, hesitating one second due to uncertainty of

one's actions can mean death and the loss of a $20 million aircraft. Thus, ensuring all

crewmembers are trained to accomplish their mission safely and effectively is the primary mis-

sion of the TFS.

One can describe the daily scheduling problem in a TS as follows. Each squadron has a

specified set of tasks to accomplish. Generally, the times of these tasks are fixed in advance and

for practical purposes are inflexible. Within a squadron one or more pilots are qualified to per-

form these tasks. A particular pilot performing a particular task accrues a certain measurable

benefit for either himself, the squadron, or both. Such a scheduling problem is similar to timeta-

bling problems described in [8][17][19][27][36][46][57]. Most of these formulations assumed

that the job times were a decision variable whereas in the TFS scheduling problem as in [27] job-

times are fixed in advance. One can also describe the daily scheduling problem as a variation of

the vehicle scheduling problem with multiple vehicle types or multicommodity flow problem as

shown in [9].

These scheduling problems have been shown to be NP-hard [37]. Consequently most

researchers have favored heuristic solution techniques such as greedy heuristics [15][49], inter-

change procedures [381 and heuristic partitioning [1]. Typically these heuristics are used in I
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conjunction with improvement procedures such as K-opt methods [7][9][39].

Other researchers have focused on exact procedures such as set partitioning

[4][41][42][43][53][58] set covering [3][35][45][51] Lagrangian relaxation [23],

[24][26][34][50][57] generalized networks [2][31J and network formulations [16][21][47].

(Though the problem discussed in [21] and [471 is somewhat different in structure.)

Exact procedures are impractical, however, when one has the objective of developing an

interactive system which one can run on a PC. This paper presents a heuristic to schedule daily

training in a tactical fighter squadron. The scheduling problem is first formulated as a transpor

tation network. A primal network network simplex algorithm is then used to assign each pilot at

most one job. As there are usually more jobs than pilots some jobs will remain unassigned. A

new network is then formed with the remaining unassigned jobs, the pilots, and feasible arcs,

where feasibility depends on the job assignments from previous iterations. An attempt is then

made to assign the remaining jobs. This procedure continues until all jobs are assigned or no

feasible arcs remain. If an infeasible solution results, a swapping routine attempts to find a feasi-

ble solution by swapping jobs between pilots so an unassigned job can enter the solution.

Finally, an improvement routine swaps jobs between pilots in an attempt to find an increased

objective function. The structure of this heuristic is somewhat analogous to that described in [27]

and [7], though these two procedures incorporate a greedy and matching algorithm respectively,

while the procedure outlined here will use a network simplex algorithm on a transportation net-

work to accomplish actual job assignments. The logic used follows closely that of manual

schedulers (see Appendix B) and appears promising in producing good integer solutions quickly.

Furthermore this heuristic allows the flexibility to model other factors which affect training and

the daily schedule other than the schedule itself. In comparison with other models, this approach

appears to offer the greatest advantages in terms of performance and practicality [23].
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Chapter I describes the structure of a typical TFS and the nature of the scheduling and

training problem. Chapter 2 shows the problem formulation ands its modifications to transform it

into a transportation network. In Chapter 3 results for a series of restricted size test problems are

presented and compared against the results of an integer programming code. Chapter 4 discusses

how one might use the model in an interactive environment to develop short and long range

schedules. Finally, a summary and conclusion with recommendations for further research is

presented.
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CHAPTER I

THE TFS SCHEDULING PROBLEM AND RESEARCH OBJECTIVES

1.1 The TFS Mission

The training a TFS accomplishes is specifically based on their tasking under peacetime and

wartime operational or contingency plans. The most common missions are air superiority (pro-

tecting friendly forces from enemy aircraft) or ground attack (destroying enemy forces on the

ground). Many units concentrate training in one area, such as F-15s training only for the air

superiority mission. Others have a mixed tasking such s an P-16 unit which may devote 60% of

its training towards ground attack and 40% towards air superiority. The heuristic developed here

is based on the requirements for a typical F-15 TFS and its pilots though the model can easily be

adopted to other organizations attempting to assign personnel to fixed time jobs.

In addition to flying taining, pilots undergo training in simulators and formal classroom

refresher training on all aspects of the aircraft systems, performance, and tactics as well as enemy

weapon systems, performance and tactics. Other training includes such areas as survival, secu-

rity, social awareness, professional military education, and post graduate work in an officer's par-

ticular area of expertise.

1.2 Duties

In addition to training, pilots accomplish specific additional duties. In an F-15 TFS theseI

duties are in one of the following areas:

1. Weapons and tactics: Ensures squadron members understand the operation and employ-

ment of both their own aircraft, weapons, tactics and possible enemy aircraft, weapons, and

tactics.
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2. Operational plans: Maintains squadron's peacetime and wartime contingency plans as

well as ensuring squadron members are aware of their tasking under those plans.

3. Training: Administers the flying and ground training program for new pilots (upgrade

training to combat ready status) and combat ready pilots (proficiency maintaining). Training

guidance comes from both higher headquarters (above squadron level) and from squadron

supervisors.

4. Scheduling: Schedules pilot tasking for both flying and ground duties.

5. Standards and evaluation: Ensures the squadron and its pilots meet required proficiency

through a system of ground and flying evaluations as well as routine inspections.

The following tables adapted from Air Force Manual 51-50 [56] (also see Appendix C) give a

representative listing of the typical duties one would find in an Air Superiority squadron. Sorties

are actual flights which range in length from 1-3 hours. With required prebriefing, post flight

debriefings, and mission preparation a typical sortie requires 6-8 hours of a pilot's time. Events

are specific task which occur during a sortie. The number and type of events which occur during a

sortie are usually determined by the pilot's themnslves though some events are specifically

scheduled to occur during a given sortie. In addition some events and sorties have currency

requirements. Schedulers assign these events and sorties to ensure a pilot does not become non-

current.

ad
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TABLE 1.1

Representative List of Typical TFS Scheduling Requiremenms*

Flying

Air Combat Training (ACBT) Sorties Collateral Sorties
Advanced Handling Cross Country
Basic Fighter Maneuvers Instrument Training
Air Combat Maneuvers Mission Support
Air Combat Training Check Flights
Dissimilar Air Combat Training Confidence Flights
Day Intercept Missions
Night Intercept Missions

Specific Events Currency Requirements
Day Aerial Refueling ACBT
Night Aerial Refueling Landing
Low Level Night Landing
Aerial Gunnery Formation Takeoff

Formation Landings
Wing Taloffs

* events not shown arc not scheduled but are accomplished during scheduled missions
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TABLE 1.2

GroundTraining

Wepns and Tactics Evaluations
22 difet subjects Air Combat Test
Gun Camera Film Review Instrument Refresher

Life SUVppon/SurViVal Plmi/Other
Egress 4 Briefings
Ejection Security
Ground Survival Social Actions
Water Survival small FiraMM
Theater Survival Dental Physical
Altitude Chamber Scheduled Exercises

TABLE 1.3

Other Scheduled Events

Meetings fgua
Daily Standup Temporary Duty
D.O. Weekly Special Training
Schedulers Weekly Combat Turn
Flight Corn Weekly Fine Fighter
Flight Weekly Static Displays
Pilot Weekly Leave (30 days/yr)
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Specific levels of accomplishment are specified in Air Force Manual 51-50 by Headquarters

USAP, the major air command (of which there are four), and the wings in the major air command

(of which their are approximately 36). There are usually three squadrons in each wing. These

levels are usually specified for a specific semiannual period. Thus the squadron organizes its

activities on a semiannual cycle.

1.3 Objectives

As stated earlier accomplishment of all training requirements is a substantial scheduling

task. As most squadrons schedule by "hand" sometimes tasked training is not accomplished. In

addition scheduling is inefficient and large disparities can arise in the specific training a pilot may

accomplish. Thus the research goals are:

1. To develop a scheduling system for a typical TFS which will correct these deficiencies.

2. To develop a scheduling system which will be both user friendly and compatible for

adoption on a Penrsonal Computer (PC). The use of a PC is important due to the lower com-

puting cost, the lack of timely access to a mainframe computer by squadron scheduler, and

the ability to cary the PC with them when a squadron deploys to a remote location.

3. To develop a system which offers solutions to daily schedules fast enough to work in an

interactive role with squadron schtedulers Due to dynamic factors such as weather and

maintenance problems, scheduling inputs can change on short notice requiring quick solu-

tions. Also, given the large number of inputs into a schedule, many of which are difficult to

model without large increases in complexity (and execution times), an interactive approach

is critical in determining an acceptable solution.
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In developing the scheduling system the objective chosen is the maximization of training

benefits to the squadron. This best meets the squadron needs for two reasons:

1. Flying time, the number of missions flown, fuel costs, and other variables, are usually

fixed above the squadron level. In addition, these levels are fixed based on many exogenous

factors such as Congressional budgets and the expected reliability of unit aircraft.

2. Maximizing the benefits gained from training are generally the stated goals of the squa-

dron.

These benefits are measured both directly and indirectly. As stated earlier, specific number

of training events are directed by AFM 51-50. In addition commanders have a certain degree of

flexibility as to which type of training they accomplish. For example, AFM 51-50 specifies no

specific number of Basic Fighter Maneuvers (BFM) sorties but instead specifies a specific number

of Air Combat Training (ACBT) sorties of which BFM is one type. A commander may specify

what percentage of ACBT sorties will be BFM based on his own judgement. As shown lawt

hopefully supervisors can translate these training goals and requirements directly into scheduling

outputs.

!I
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CHAPTER 2

MODEL FORMULATION

2.1 The Daily Schedule

A graph G(NA) consist of a setN of nodes and a setA of unordered pain of nodes called

arcs. The arc i - je A with i] j N implies a direction of flow from node i to node j. If each arc

in A has a number associated with it, such as a price per unit flow over the arc, the graph is

termed a network [33).

Consider the scheduling problem where one has a set of pilots I who are available to per-

form a set of required jobs J. For the purposes of this paper a job j is considered to be the two-

tuple of a given task type and time span of the task occurence. For example task type a may start

at 0600 and last 3 hours until 0900. Call this job A. Job B is also a task type a, however it starts

a 0800 and, as it is also a task type , last 3 hors until 1100.

TIME00 %

JOB A

JOOBa

~JOB C

JOB E

JOB F

Q - INDICATES JOB START TIME
I -IOCATES JOB STOP TIME

FIGURE 2.1. Task type/Task time Two-tuple representation or Jobs

I
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Notice in Figure 2.1 that jobs A and B overlap timeperiods. Thus one individual could not

perform both jobs.

For the scheduling problem presented here each pilot iel is qualified to perform some sub-

set of the jobs jeJ. One can show these qualifications in a network such as the one depicted in

Figure 2.2. This is a bipartite network representation of the scheduling problem. Bipartite means

that one can separate the nodes into a left or right group ( here pilots are on the left and jobs on

the right). Each directed arc from pilot i to job j indicates that pilot i is qualified to perform job

j. The number above the arc represents a measure of the "Benefit" of pilot i performing job j.

This benefit may be thought of as a price received for each unit flow across an arc from i to I.

Chapter 4 discusses how this benefit is determined.

FIGURE 2.2. Bipartie Tranqoutmlo Network
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To understand what is meant by flow note that S , i = l,..., represents how many pilots of

"type" i exist. Since each pilot i is a unique individual all S, i < n are equal to 1. DJ represents

the number of jobs j. D, is some integer value 2 1. Note that one could have two or more of the

same task-types occurring at the same time. The Si represent the supply or input into the left side

of the network while the D, represent the demand or output on the right hand side.
a U

Stated another way the ED, jobs demand the services of E.S pilots. Thus the supply of
j-l i-I

pilots flows across the arcs to meet the job demands. The two numbers below the arcs indicate the

minimum flow allowed across each arc ( here 0 for all arcs) and the maximum allowed ( infinity

for all arcs ).

The situation often arises where one may have more jobs than pilots. Thus pilot i=m is

designated a "Bogus" or dummy pilot to handle excess jobs. Conversely one may have more

pilots than jobs thus one has a dummy job or sink for these pilots to peiform which is designated

job j=n. Consequently, to maintain supply equal to demand one has

a-I

J-I

and

-1
D>. - .Si
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The objective sought is to have flow move across the arcs in such a way that one gains the

maximum total benefit. Therefore this network formulation may be represented as the following

optimization problem:

* U

Maximize By P0  (1)
i-I jul

St PO=S (2)
j-=

Zi P =Do (3)
iml

Pq k 0 and integer (4)

where

I = Set of Pilots (i=L,2,3,...,mJ

J = Set of Jobs (j=l,2,3,...,nJ

Di =JobJ'sdemnd

S =Pilot i's supply

B= Bendt(price) of pilot i perfrming job J

=Pilot i perfarming job j

The above formulation is an example of the classical network transportation problem [33].

Network theory proves that the optimal solution to the above problem will have an integer solu-

tion since all supply, demands, and arc bounds are integer [1][ 13J[33]. Various algorithms exist

which can efficiently find the solution to such problems. One of the fastest methods is the primal

network simplex algorithm [12]. A brief description of how the algorithm works appears in

Chapter 3. For a more detailed explanation of the algorithm and computer implementation the

reader should refer to [131[201[2811291[521. Note that the solution to the network problem as

stated will in essence assign each pilot to one job. Thus one avoids the problem mentioned earlier

of two jobs overlapping and the infesibility of assigning one pilot to do both jobs. Consequently

this restriction is not explicitly stated in the transportation problem as it is implicitly enforced.



-14-

However jobs will be assigned to the bogus pilot if

n-1 M-I

jul imi

Even if there are enough pilots to cover all jobs one may have jobs assigned to "Bogus" as one

has no guarantee that pilots exists who are qualified to perform any job given. This situation

would mean no feasible solution exist. For the purposes of this paper, unless stated otherwise, a

feasible solution is assumed to exist. However, this feasible solution may require pilots to per-

form more than one job.

The following example helps to illustrate this point:

22

FIGURE 2.3.1. An Initial Solution to a Scheduling Problem (Only arcs with flow are

shown)

wd
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From the initial transportation problem pilot I is assigned job A, pilot 2 job C, and

"bogus" pilot 3 job B. As jobs A and C are assigned to real pilots one is left with a new assign-

ment problem, namely to assign job B to a real pilot Say jobs A and B have the start and stop

times shown in Figure 2.2. Since Job A starts at 0800 and ends at 1100 while Job B starts at 0900

and ends at 1200 pilot I cannot perform Job B. Consequently one has the following new network

structure based on the previous job assignments.

FIURE 2..Now Netwwrk Stucture Following Mntal Aulgmments

'°k
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Arc cost are only shown on those arcs which are now infeasible based on the initial job

assignments. Notice that since jobs A and C have been assigned their demand has dropped to

zero. For each pilot i, if performing job j would conflict with a job k assigned to pilot i, then the

benefit price of that pilot performing job j is changed to a value less than -M where M -+ .

Notice that the Bogus pilot arc prices are always -M. Thus a pilot with an arc price < -M is

never assigned to the job that such an arc points to. Consequently, the optimal solution of the net-

work in Figure 2.3.2 is

FIGURE 2.3.3. Final Solution

L'I' "P ' ~~ ~ ~~~~~Wi 02 I l I I "'"I "Ir " ' I
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In summary, to assign jobs assigned to the "Bogus" pilot m from the first iteration the prob-

lem is restarted with these "Bogus" assigned jobs. All infeasible links have their arc price set to

< -M where M -c-. Infeasible links are the P& such that for a given Pi * 0, j * n ,k e ii

where Jj, is the set of jobs including j which overlap the time periods job j occurs. In other

words, if a pilot is busy performing job j during the time job k occurs then he cannot perform job

k.

Thus on the second and subsequent major iterations the following reduced problem is

solved.

IN B

Maximize y . P, for all j e J,.. (5)
i.1 j-1

st iP = Si for all e J,. (6)

P = D7"' for all j e J. (7)

Pi +Pi = Oor Iforallke J' k *j ,j * n (8)

PO integer 2 0 for all j e J (9)

J,,. - set of unassigned jobs J,, c J

DjF" = updated demand for job j e J,,

B!7 " - updated benefit of pilot i doing job j e J.,
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The algorithm is summarized as follows:

ALGORITHM A

STEP 0. Input pilot qualifications and jobs.

STEP 1. Assign each m - 1 pilot at most one job. If all jobs assigned or no

feasible arcs exist for unassigned jobs go to step 3.

STEP 2. Determine infeasible arcs from assignments made in step 1.

Change cost on these arcs to -M. Update job demands and benefit prices based on

previous job assignments. Return to step 1.

STEP 3. Print schedule.

The cycles recur until all jobs are assigned or no feasible arcs remain. The nature of the typ-

ical daily flying schedule most often restricts the number of iterations to two with rarely more

than three iterations occurring before all jobs are filled or an infeasibiity occurs.

I
I
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Infeasibilities occur when on subsequent iterations no pilots are available to perform one or

more available jobs. With 24 flying jobs and 10-16 ancillary positions to fill there are generally

enough pilots available to "fill" a schedule. However when a job exists with few pilots qualified

to do it (i.e., few entering arcs to the j node) infeasibilities can occur. The following example

illustrates this point. The dummy supply and demand nodes have been omitted. The table at the

bottom of the figure gives the start and stop times of jobs A,B, and C.

A- 01

JOM START AND STOP TIME

TIM

JOBA

FIGURE 2.4. Network Structure of the Problem
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In this example Pilot 1 is qualified to perform all three jobs while Pilot 2 is only qualified to

perform jobs A and B. On the first iteration Pilots I and 2 are assigned jobs A and B respectively.

Job C remains unassigned so a second iteration begins. However, no feasible solution exist since

Pilot I doing job A is busy when job C begins and pilot 2 is not qualified to perform the job. Had

pilot 1 been assigned job B instead of A on the first iteration, a feasible solution would exist.

Several approaches to avoid such infeasibilities exist.

2.2. Handling Infeasibilitles

2.2.1. Fillindexes

First one could restructure the price of each pilot performing a particular job to steer a pilot

towards a feasible schedule. By dividing the number of pilots qualified to perform a job by the

number of jobs, one gets an average number of pilots qualified to perform each job. This is simi-

lar to the supply demand ratios used to rank order time categories by Glassey and Mizrach 127).

Call this the fillindex of job j. Note that having 10 jobs with 10 pilots qualified to perform the

job gives the same fillindex as having one pilot qualified to do one existing job. However one has

greater flexibility in assigning the 10 jobs since undoubtedly some pilots can perform the same

type of job twice due to time staggering between jobs. Thus one also needs a measure of how

many jobs a pilot is precluded from doing if assigned job j and how hard (fillindex) the jobs will

be to fill that he is precluded from doing. Thus one might use a price as follows:

flnindexi r -

where Ii is the set of jobs pilot i is qualified to perform.

Byi above is a price structure based solely on "benefit". Here 0ol + w 2 = 1. With this price struc-

ture and w)2 > 0 a pilot is less likely to perform a job which interferes with a large number of

other jobs he is qualified to perform. This is especially pertinent to jobs for which there exist a
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large number of other pilots qualified to perform it. Setting the weights oh and o is difficult,

however. (o = 1 and oh = 0 gives full weight to the benefit function while e, = 0 and w2 =1 gives

full weight to scheduling feasibility.

In testing of several schedules no discernible pattern arose which could consistently guaran-

tee that infeasible schedules would not arrive regardless of the exact values of oh and ah. Furth-

ermore arbitrarily setting o > I assumed some degree of infeasibility existed which is generally

not the case. In setting w2 > I one would sacrifice some degree of optimality to achieve feasibil-

ity even though not required. To resolve this problem one could set o - I and o = 0 and attempt

to solve the problem. If a feasible solution is not found the problem can be restarted with o) < I

and o)2 > 0 and rerun. One could go so far as to program a stepped increased in Ch (with a con-

current decrease in cot) until a feasible solution was found or until oh - 0 and o, -1 . However this

would be unduly time consuming and one would in the end still have no guarantee of fasibility.

In fact it is relatively easy to develop schedules for which the proposed filindexes fail to achieve

feasible solutions.

2.2.2. Natural Structure

A more intuitive approach incorporates the natural structuring of a daily flying schedule to

avoid infeasibilities. When flying 24 sorties in a day squadrons do not fly 24 different aircraft.

Takeoffs are grouped in "go's". For example 10 aircraft may launch in the morning "go".

Eight of these aircraft will launch in the midday "go" with two of the morning aircraft acting as

spares. Then there may be a third "go" with six aircraft launching and four acting as spares.

With such groupings pilots are generally available to fly in the third "go" after debriefing their

missions from the first "go". Other scheduled ancillary duties such as supervisor of flying, squa-

dron supervisors, and mandatory meetings, lack this natural "grouping" in scheduled time.

Characteristically individuals who perform these ancillary jobs are the same individuals ,such as
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instructor pilots (P) and flight examiners (SEFE), who are qualified to perform jobs with rela-

tively low fillindexes. One could accomplish much the same affect as desired with the pricing

scheme by assigning these ancillary jobs first, then assigning the flying jobs. This avoids situa-

tions where the pricing scheme does not capture scheduling hindrances that may exist. For exam-

pie a schedule may have 10 basic pilot jobs to fill with 10 pilots qualified to perform these jobs

giving a fllindex of one to each job. In addition one IP job and one SEFE job may exist with one

of the 10 pilots qualified to perform both of these jobs. Therefore both the IP and SEFE job

would have a fillindex of one. Depending on the exact times the jobs occur, the Bi' derived in sec-

tion 2.2.1 may or may not steer this uniquely qualified pilot into these two jobs before he is

assigned to a pilot job which interferes with his acceAplishing the SEFE and IP job. However,

by segregating the SEFE and IP jobs and assigning them first. 9 pilots would be left to fill the 10

pilot jobs with a high likelihood, due to the natural grouping of these jobs, that a feasible

schedule, flying one pilot twice, could quickly be found.

Such clusterings are similar to the partitionings outlined in [7]. However here one is estab-

lishing clusters based on empirical observations about the general characteristics of the assign-

ment process as opposed to objective criteria such as the actual start and length of particular jobs.

In an earlier formulation of the daily scheduler algorithm such clusterings of jobs was attempted.

At i = n all jobs that started at that time were assigned to pilots i who were qualified and availble

where availability was based on jobs assigned to pilots i from t = I to i = n - 1. Typically there

were at most four jobs with the same start times with the most common number being two. This

generally resulted in 10 to 15 clusterings with each clustering requiring de initialization and

solving of a transportation (albeit small ) problem. This strategy tended to be unduly time con-

suming. With this procedure there also tended to be a higher rate of infeasibility since only jobs

starting at a discrete time period were considered. Thus towards the end of the day individuals

who were uniquely qualified or were one of a few who were qualified to perform a job were often

t"'al
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unavailable to be scheduled. Finally, this procedure resulted in a poorer overall objective value,

as one might expect, since one is in essence optimizing over several small subsets of the same

problem and adding the results. In the procedure finally adopted a more global approach is taken

since in general one to four clusters only are employed.

For feasibility purposes the two basic clusters used were:

1. Fsential ground jobs.

2. All other jobs.

Other groupings can be made that make restrictions such as n two nonflying jobs of the same

type on the same day and pairings easier to manage. This point will be discussed in greater detail

later.
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Thus the revised heuristic may proceed as follows:

ALGORITHM B

STEP 0. Same as ALGORITHM A. In addition set c - where

c e C , C = Set of job categories, (c = 1 ..... d).

STEP 1. Assign category c jobs.

STEP 2. Determine if all category c jobs are assigned or if category c jobs

remain but there are no feasible arcs to these jobs. If so and c *' d, set c = c + 1

else goto step 4.

STEP 3. Determine the infeasible arcs and update prices and demands as

before. Return to step 1.

STEP 4. Print schedule.

This approach was superior to the filUindexes in most cases in its ability to resolve infeasi-

bilities. However, again, in most cases infeasibilities would not exist under the basic algorithm.

To restrict the problem to solving job assignments by categories may unnecessarily increase solu-

tion times. Conversely one still has no guarantee of a feasible solution.

2.2.3. Swapping

In a final attempt to resolve infeasibilities one could instead or in conjunction with the

above procedure use a swap routine in an attempt to produce a quick feasible solution. The rou-

tine starts if one enters step 4 of Algorithm B with unassigned jobs. The swap routine uses a

pointer to indicate which pilots am qualified to pefonn the unassigned job(s). Another pointer

tracks the remaining feasible arcs. If one or more feasible arcs exist for each conflicting job

assigned to a pilot who is qualified to perform the unassigned job, the unassigned job is assigned
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to this pilot. The conflicting jobs which were assigned to this pilot are "unassigned" and thrown

back into the job pool. Another simplex iteration is then started where, since feasible arcs to

these jobs exist, these newly unassigned jobs are filled by other pilots. If one cannot find a pilot

for which there are feasible arcs to all of his conflicting jobs (those jobs he is assigned which

prevent him from performing the unassigned job) one assigns the unassigned job to the pilot with

the lowest number of conflicting jobs. In case of ties assign the unassigned job to the pilot who

has the highest B~,.

Once a swap has been made the jobs swapped to a pilot are permanently assigned to him.

In this way one prevents cycling in later iterations and thus guarantees termination of the algo-

rithm although one may still terminate with an infeasible solution. This situation would most

likely occur after several iterations of assigning unassigned jobs to pilots though the swap tou-

tine. Thus in the latter iterations relatively few pilots exist who can swap out assigned jobs to

pick up an unassigned job. However this situation has yet to occur with testing of real world

schedules.

Consider the jobs A through F with start and stop times shown in Figure 2.5.1. Based on

the network structure (not shown) pilot I was assigned job A, pilot 2 job C, and pilot 3 job D on

the first iteration. I
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TIME

JOB A

JOB B

JOB C

JOB D

JOB E

JOB F

FIGURE 2.5.1. Job Start and Stop Times
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On the second iteration pilot 1 was assigned job B. No further assignments were made as no

feasible arcs remained. The resulting schedule is shown in Figure 2.5.2 with jobs E and F

assigned to Bogus. Since no feasible arcs to these jobs exist the swap routine starts.

FIGURE 2.5.2. Initha Solution (uink node and flows not drown)

IJ •IJ I
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Pilots I and 2 are qualified to perform Bogus job E however pilot l's job B and pilot 2's job

C interfere with job E. Scanning the feasible arcs we find that pilot 2 can perform job B and C.

Thus pilot 1 drops job B which pilot 2 picks up freeing pilot 1 to pickup job E. The new assign-

ments are:

/A
iC

FIGURE 2.5.3. First Swap Assignments (Swapped and newly entered arcs are dark-

ened)
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Now pilots 2 and 3 are qualified to perform job F. Pilot 2's job C interferes as does pilot

3's job D. Since both pilots would have to drop the same number of jobs in a swap, one com-

pares their By . Pilot 3 has a higher By thus pilot 3 drops job D which is picked up by the Bogus

pilot and pilot 3 picks up job F.

FIGURE 2.5.4. Swap Based on Di

-_
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Pilots 1, 2 and 3 are qualified to perform job D which was just swapped to Bogus. However

as job D interferes with job F, ( which was "swapped" to pilot 3), pilot 3 cannot pickup job D.

Job 4 also interferes with pilot 2's job C and pilot l's job A. Pilot 1 has a higher B,, and drops

job A while picking up job D. A feasible arc exists from pilot 3 to job A thus pilot 3 now picks

up job A through a simplex iteration. A

/C

UD

FIGURE 2.5.5. Swap with a Simplex Iteration

If pilot 1 and 2 had not been qualified to perform job D the algorithm would have ter-

minated with job D assigned to Bogus.
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The following is a summary of the revised heuristic with swapping and job categorizing.

ALGORITHM C

STEP 0 through 2. Same.

STEP 3. If all category c jobs are assigned go to step 9. Else determine the

infeasible arcs and set their cost to M. If any feasible arcs exists for unassigned

jobs go to step 1.

STEP 4. Determine I, = Set of pilots i qualified to perform unassigned

job j . Note that if Pilot i is assigned any conflicting job n which was "swapped"

to him that he is not "qualified" to perform job j. Iflj is empty assign job j to the

"Bogus" pilot and go to step 3.

STEP 5. Determine ly = Set of pilots x who are available to perform

conflicting job y eiJ assigned to pilot i e l.

STEP 6. Find a pilot i e Ij for which there are pilots x C ly for all

conflicting jobs y assigned to pilot i. In case of ties select the pilot with the

highest BiJ. If found then go to step 8.

STEP 7. Find the pilot i e lj with the lowest number of conflicting jobs y

for which there are no pilots x e ly. In case of ties select the pilot i with the

highest BYj

STEP 8. Assign job j to pilot i and unassign all conflicting jobs y and place

them in category c. Goto step 1.

STEP 9. Print schedule.

In summary this procedure attempts to swap jobs to resolve infeasibilities while disrupting

the present schedule as little as possible. Should infeasibilities still exist in the final solution,
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schedulers can often resolve them quickly by relaxing constraints such as the length of a particu-

lar job. In fact one could program such relaxations however the increase in complexity would

likely weigh against the benefits of such a procedure. Resolving such problems interactively has

worked well in similar models as shown in [21]. Thse interactive aspects are discussed in more

detail in Chapter 4. Figure 2.6 shows a flow chart for the daily scheduler.
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2.3. Increasing the Time Horizons

Note that one can select any desired time horizon for assigning jobs. However the dynamic

environment in which flying sorties occur often degrades planned training into alternate missions

or mission aborts. Thus schedules created based on anticipated accomplishment of specific train-

ing events occurring at specific times will quickly lead to distorted scheduling. Indeed one of the

primary goals in developing this heuristic is to allow schedulers to react quickly to unanticipated

changes in a timely manner. However, a long range schedule, of say a week, may provide some

benefit, especially in its assignment of non-flying duties which rarely change. In addition, a pilot

can gain a general idea of which events he will accomplish the following week and squadron

scheduling can identify possible problems such as a shortage of pilots qualified for a specific jobs.

By highlighting possible infeasibilities early, squadron supervisors may be able to rearrange the

conflicts which create the infeasibilities. Obviously the longer the time horizon the longer the

schedule will take to run. However, after completing the next day's schedule, scheduler's could

allow the model to run in the evenings after the completion of daily flying and review the results

the next day. Thus they would have an updated weekly schedule each day.

2.3.1 Truncation Effects

As outlined in Chapter 1 and will be discussed in greater detail in Chapter 4 most of the

training events that are of a required nature have an associated due date or currency. Thus the

very real problem exists that in limiting the time horizon that one may induce serious distortions

into the daily schedule due to myopia. As mentioned above the high levels of uncertainty would

appear to make attempts at scheduling on anticipated states more than one or two days in advance

somewhat dubious in their value. Also the level of complexity involved in advancing the schedul-

ing system beyound a deterministic to a stochastic model may make the PC compatibility goal

unattainable. However this point has not been pursued in depth and remains an open area of
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research for the purposes of the daily scheduler. A look ahead feature is partially captured in the

price structure used to determine the relative measure of benefit of a pilot performing a particular

job. This price structuring will also be discussed in Chapter 4.

2.4. Incorporating Additional Constraints

2.4.1. Pairings

As mentioned to earlier, there are advantages to categorization when attempting to pair

pilots. A pilot, for example, may have to fly with an instructor pilot to regain flight currency. In

addition, tactical fighters, as a matter of doctrine, usually operate in pairs or combinations of pairs

with one pilot designated the flight lead and the other a wingman. Some units supervisors like to

pair the same pilots for the obvious benefits gained with two individuals always operate as a

team. To accomplish this one could divide jobs into flight lead and wingman (or for two place

aircraft such as the F-4 into front-seat back-seat). In the manner described in Algorithm C jobs

are then assigned by categories. After ground jobs, flight lead positions are filled. Each job a

flight lead fills has a paired wingman job associated with iL The paired wingman job has an asso-

ciated variable indicating which pilot fills the flight lead position. As the pice matrix is restruc-

tured for the next iteration in step 3 of the algorithm, if Pilot A's paired flight lead occupies the

flight lead position then that pilot's price for doing the paired wingman job increases by some

factor. One could force a pairing by setting all prices on the arcs to the paired job to < -M

unless that individual is the paired wingman for the job. However this increases the likelihood of

infeasibilities. A similar logic can work for pilots requiring instructor pilots to regain lapsed

currency or to accomplish upgrade training. These pilots are assigned first then a vector indicates

the desirability or requirement for an IP in the paired job.

One can prevent pilots from working together in a similar manner. Sometimes supervisors

do not wish certain individuals to fly together. After flight lead jobs are assigned, if pilot i is
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qualified to perform the paired job of some other pilot x, but pilot i and x have been identified as

two individuals who am not to fly together, one simply changes the price on pilot i's arc to the

paired job to < -M.

As before, setting the value of these pairing factors involves tradeoffs. How much more

beneficial is it for pilot A to receive upgrade training with an EP than for pilot B to fly in the same

slot on a standard mission? In addition preventing two individuals from working together

increases the likelihood of infeasibilities. To give supervisors a clearer picture of the tradeoffs

involved in attempting to schedule to satisfy normal training requirements vs pilot pairings, a

group of graphs similar to the ones shown in Figure 2.7 may be developed.

.'.

I I ! : I I1 ] ' 'PI " I 1 "'' a



-36-

NORMAL TRAINING

0.6 ).
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a) Select pairing weight
b) Read right to de intenection off the curve.
c) Read down for dhe percemnp of currency period remaiing below which

pilot currency will oveide a pilot paring in a competing job sloL

FIGURE 2.7. Tradeoffs Between Pairing Pilots and Curreucies
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For those pilots requiring ns for currency requalifications the pairing factor should be high

as having pilots noncurrent in some event is highly undesirable. For other IP jobs the tradeoffs

are less clear. A TFS has a requirement to complete upgrade training (which requires IP's) in a

specified period of time but this should not be at the expense of proficiency flying for those pilots

who are already combat ready. Obviously empirical experimentation and to an extent intuition

will have to be used in determining relative weights.

2.4.2. Length of Tour Constraints

Another constraint which is incorporated into the basic daily scheduler is the crew rest and

duty day constraint. Pilots are restricted from having a duty day of greater than Ld hours where

the duty day begins at the start of the first job and ends after the last job is completed. In addi-

tion, pilots must have L, hours of uninterrupted free time following their last duty before they can

start a new job the next day.

To enforce these constraints one simply appends those jobs to J; which would cause duty

day or crewrest violations if job j is assigned to pilot i. The length of the duty day and crewrest

are user selected though current Air Force regulations specify a 12 hour period for both. So for

the standard TFS model all jobs which sam less than 12 hours after job j ends and end more than

12 hours after job j begins are appended to J; since they would violate the duty day restriction.

Likewise all jobs which end less than 12 hours before job J begins and start more than 12 hours

before job j begins are appended to J as these jobs intefre with crewrest. In this manner

crewrest constraints are enforc*d for the entire time horizon during any one run of the scheduling

program.

After all jobs are asigned one updates the pilots nonavailability due to crewnst constraints

in the availability file. The availability file is just that, an input file which tracks a pilot's availa-

bility. The data from this file, which also includes manually scheduled jobs as well as long range
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scheduled jobs, is used an input into subsequent runs of the daily scheduler. In this manner jobs

scheduled in the future are not scheduled in conflict with crewrest constraints from past

schedules.

2.4.3. General Constraints

One can enforce constraints of a general nature through the appropriate structuring of the 4;
set. For example by appending all jobs of the same type as job j to J; one will exclude an indivi-

dual from performing more than one type of job j for a given time horizon. In general if by per-

forming job j an individual is excluded from job k, simply append job k to Ji'.

2.5. Improving the Solution - An Interactive System

The Algorithm C provides a solution to the scheduling problem. Again though, one has no

guarantee of feasibility much less optimality. Empirical results on a limited number of test prob-

lems (see Tables 3.1,3.2 and 3.3 ) have been encouraging in both the perceived quality of the

solution and the execution times. However one may be able to improve the solution while meet-

ing required time criteria. The time available to generate a solution will vary. Preparing

Wednesday's schedule Monday evening one may be able to allow the algorithm to run all even-

ing. However on Tuesday morning one may need a schedule within a minute as one react to

changes brought about as a cold front moves through. Under such variable conditions allowing

the user to select the desired level of optimality, with the attendant time increases for solution,

would seem an advantageous way to implement the daily scheduler. Under this scheme Algo-

rithm C is run with all jobs in one category. In most cases this will produce an acceptable

schedule in the minimum amount of time. If infeasibilities exist however, the current solution

with infeasibilities is presented onscreen while the scheduler program restarts with the two

categories mentioned earlier. For relatively minor conflicts the operator may be able to resolve

them before a new computed solution appears by simply relaxing constraints. If so he can manu-
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ally terminate the program. If not the swapping routine with job categories will most likely

resolve any conflicts if possible. Such a feasible solution will likely be "good" enough. If time

permits though, the user may elect to let an improvement routine attempt to find a better (higher

objective value) solution. This improvement routine is a modification of the swap routine given

in section 2.2.

yYES SEE FIGUE 2.6

~CONTINUE?

YEs

FIGURE 2.. Appended Flow Chart hr Algorithm C With Improvemnt Routine
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In the improvement phase one starts by rank ordering all of the assigned jobs in ascending

order based on their arc prices. Starting with the lowest priced job as the input job j one initiates

the swap routine. If the pilot who is currently assigned job j can take all of the conflicting jobs y

of pilot i e i then one checks to see if such a swap will lower the objective value. If so the swap

is made. In case of ties one uses the higher objective value increase to determine which pilot

gets the job. This procedure continues until the last job is checked. Jobs are then reordered based

on their new (if any) arc prices and the procedure repeats. This recurs until manually terminated

or one cycle through all of the jobs can produce no objective value improvements. Note that if we

enter the improvement phase with an infeasible solution that a possibility exists for finding one

during the improvement phase even though the swap routine failed to do so. This is because one

is looking at the jobs in a different sequence and one does not enforce the restriction of not swap-

ping out jobs that have been labeled to a pilot. In addition one is evaluating candidates for swap-

ping based on raising the objective function as opposed to minimizing disruptions. This slight

change in logic in effect perturbs the solution that might exit the swap routine and thus may even-

tually lead one down the road to feasibility.
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To summarize dhe improvement phase:

IMPROVEMENT ALGORITHM

STEP 0: Rank order all jobs 1... m- I in ascending order by arc price. Set j - 0.

STEP 1: Setj-j+l. Ifj-mgotostep6.

STEP 2: Determine Ij as before except pilots are not precluded from 1, if they

are swapped any job. If ij empty go to step 1.

STEP 3: Determine I,. ly can only contain the pilot who originally had job j .

If empty go to step 1.

STEP 4: Find each i el j for which pilot x determined in step 3 can take each y

assigned to pilot i. If none to go step 1.

STEP 5: Find the i in step 4 whose swap would cause the maximum increase in

the objective value. Make the appropriate swap if the objective value is raised,

else go to step 1.

STEP 6: If any swaps have been made go to step 0 else print solution.

Note this is essentially a modified 2-opt improvement procedure [9](39]. In this case how-

ever assigning job j to pilot i may mean dropping more than one job from i . Conversely the

pilot x that picks up a job dropped by pilot i on a swap does not drop any job other than the jobj
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CHAPTER 3

RESULTS

3.1 The Network Simplex Code

To solve the network problem a primal network simplex code is used. To start the algorithm

one requires an initial solution. Various methods exist to get such a solution but one of the sim-

plest and fastest is the all artificial start or "Big M" method. To see how this method works note

that S., - D. gives the aggregate excess supply if positive, or aggregate excess demand if nega-

tive. Using this number one can merge the Bogus and sink node into one node which is called the

root node. Supply arcs connect the root node to the job nodes and demand arcs connect the root

node to the pilot nodes. By setting the flow on all of these arcs equal to the corresponding supply

or demand from the corresponding pilot or job nodes one gets the initial solution to the transpor-

tation problem as depicted in Figure 3.1.

IS-ED

S, S2 S3  PA N De

FIGURE 3.1. Initial Solution Using the Big M Method
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Before proceeding further a clarification needs to be made about arc prices. The primal net-

work simplex code used here actually seeks to find the minimum cost to the objective function.

Consequently, on maximization problems one actually enters negative arc prices on the arcs. In

this manner one gets a maximization solution to the problem by just multiplying the results by -1.

To be consistent "good" arc prices will continued to be written as posi tive values while negative

arcs values indicate "bad" values.

All of the artificial arcs actually have a value of <- M in the code. Recall also that any

infeasible arc also has a price of < - M. Consequently if any of the arcs in Figure 3.1 are

replaced with arcs having prices 2!-M the objective value will improve. The network simplex

algorithm conducts this interchange of arcs until no further exchange will improve the solution.

To see how this is done note the character of the graph shown in Figure 3.1. All arcs span down-

ward from the root node. This rooted spanning tree graphically displays a possible solution, or

basis to the scheduling problem. Now one would wish to see if one could improve it. Consider

the possible entry of an arc from pilot 1 to job A. If dis arc enters the "basis" the arc from the

root to the job A node will have to leave since the arc indicates who is performing the job and

only one "pilot" can perform the job (this isn't quite correct but will serve for pedagogical pur-

poses now). Consequently the arc connecting the root to job A is "cut". Thinking of the job A

node as a ball on the end of a string one can visualize it falling as the root node arc is cut and the

ball swings down to hang under the pilot I node (Figure 3.2).
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Finding a node whose entry into the basis will lower the objective value is known as pric-

ing. Determining which node will leave as a result of this arc entering is known as a ratio test.

Restructuring the tree following this exchange of arcs is called updating the basis and together

with the ratio test is called pivoting.

Various schemes exist to price arcs but they all have one action in common which is deter-

mining the reduced cost of a potential arc entering ( recall that the network simplex code is actu-

ally seeking to minimize cost ). Consider following a path down from the root node to each node

in the tree. Starting each trip from the root node with a sum of 0, add the price of an arc traversed

if moving in the same direction as the arc and subtract the cost of the arc if you traverse the arc

opposite the directior! it points. When you reach a node the net sum is the node potential or dual

price of the node. In the previous example one could evaluate the reduced cost of the arc from

pilot 1 to job A as follows:

Reduced cost - Dual of the from node + cost of the arc - Dual of the to node

If this reduced cost is less than 0 then the overall objective value is reduced (raised for a maximi-

zation problem) if this arc enters. In the network simplex algorithm used here each arc from a

given pilot was priced and the one with the largest (if any) reduced cost was pivoted in. This stra-

tegy is known as row most negative or outward node most negative rule. Other more complex

methods exist but were not considered due to the small size of this problem in network terms.

The routine of pricing and pivoting continues until no arc prices with a negative reduced

cost. At this point the solution is optimal and the algorithm terminates.

The actual primal network simplex code is contained within the computer code for the

scheduling algorithm located in Appendix F. The code uses a 6 node- length and 3 arc length list

to represent the network basis. The node functions consist of the predecessor node, the predeces-

sor arc, thread, depth, up, and dual functions. Denoting a particular node as i and arc as k, the

basis tree was described by the Pred(i) and Predl(i) functions. The Up(i) function indica ted
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whether the predecessor arc pointed up or down. The Thread(i) and Depth(i) functions were used

in pivoting. The Dual(i) was also maintained as a node function. Data was read in Forward Star

form . Forward Star indicates that arcs are listed by the from node in ascending order. By storing

the arcs in this fashion one did not have to store the "from" node as all was needed was a pointer

to the first arc emanating from a given from node. The to node was stored in the Bnode(k) func-

tion while arc prices were stored in the Price(k) function. The basis solution was indica ted by the

flow over the arcs which was stored in the Flow(k) function. As all upper arc bounds were os and

lower bounds 0, they were not explicitly stored. The data storage requirements for this code will

vary depending on specific coding techniques. Many tradeoffs can be made between storage imi-

tations and execution speed by storing data explicitly in core. Given the storage limitations of

PCs though the author is presently developing a minimal storage version of the algorithm. Desig-

nating NP as the number of pilots, NJ as the number of jobs, NA as the number of arcs, and NC

the number of job categories used the major storage requirements would consist of the following

(A constant cost structure is assumed, pairing designations are not enforced ) :

The 6 node length arrays described above * ( NP + NJ + 1).

The 3 arc length arrays described above * (NA). Note that infeasible arcs

can be designated by changing the sign of their arc prices.

A pointer to the first arc of each pilot and a pointer to the first job of each

category, i.e. I * (NP + NC + 1).

A pointer for each pilot to the first job he is assigned. Each job has a pointer

to the next job assigned to the pilot. The last job assigned to the pilot points back

to the pilot. The node number of labeled jobs have a negative value. I * (NP +

NJ+ 1). I
The start time and length of each job. 2 * (NJ).

-,''''I'll, Q W 9 0
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The demand and supply levels for each job and pilot. 1 * (NP + NJ + 1).

The set of jobs which conflict with a given job. One does not have to store

this as scanning all the jobs start and stop times would give the conflict informa-

tion. However as this set is used as a general use con straint enforcer and the

conflict comparisons are done so frequently in the code the direct storage of this

set is deemed beneficial. (NJ) * (NJ) worst case.

This would give an approximate total storage requirement of 9NP + 1ONJ + (NJ*NJ) + 3NA

+ NC + utility storage. For a typical F-15 squadron this would be approximately 3500 to 4000

data elements for a full daily schedule with a high availibility count for pilots. For more details

on network algorithms, their structure, and the functions listed above see [13][20][28][29][52].

3.2 Test Results

The algorithm created was named PAS. PAS was tested over a series of 5 test problems (see

Table 3.1). These simplified problems were generated from real world data (22]. Test problem

characteristics are listed in Table 3.1. Test problems I and H are "typical" daily flying schedules.

Test problem II is a schedule under reduced manning as is common during the holiday season.

Test problem IV is a reduced manning and sortie problem typical of a squadron deployed to a

remote location. Test problem V is a "hard" schedule with only one feasible solution and a price

structure designed to induce the initial assignments away from the feasible solution. It is thus

designed to show the reliability of the heuristic "category" solution method and the swap rou-

tine. Test problems VI and VIII are reduced schedules with reduced number of pilot

qualifications. They were designed to allow a comparison with the integer code ZOOM on other

than trivially sized problems. Test problem VII is one such trivially sized problem but nonethe-

less is instructive along with the other problems in showing the increased running times that one

may expect with integer codes as problems get larger.
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TABLE 3.1

Test Poblem Suuctu=

Network Structure Integer Formulation

Problem Number Number of Number of Number of Number of
Nodes Arcs Int Var Constraints

PROBLEM I 64 536 542 3727

PROBLEM II 62 527 519 4116

PROBLEM I1 55 491 468 3796

PROBLEM IV 21 71 63 149

PROBLEM V 20 34 28 20

PROBLEM VI 27 101 87 257

PROBLEM VII 19 43 32 18

PROBLEM VIII 31 149 135 495

mI
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Table 3.2 shows comparable run times with the integer package ZOOM/XMP [44]. For

each model (except problem V) three different data sets were used. B refers to the basic data set

generated from real world data. RI and R2 were two different data sets which employed ran-

domly generated arc prices. This data was generated using the UNIX "srandom" function. Ran-

dom arc prices were restricted between 0 and 100. All runs were on a Princeton University Vax

11/750 operating under Berkely 4.3 UNIX Operating System. PAS was coded in C and compiled

under the UNIX C compiler. ZOOM/XMP is written in Fortran and was compiled under the

UNIX Fortran 77 Compiler. ZOOM/XMP incorporates a simplex method with a candidate list

pricing strategy to find an initial linear programming (LP) solution to the scheduling problem

with the integer constraints relaxed. If the solution is not integer, a heuristic is used in an attempt

to find an integer solution. If found and within a user specified tolerance the procedure stops else

a branch and bound routine is entered. Details of these procedures are referenced in [44]. For the

test problems the objective function value found from the heuristic presented here was entered as

an incumbent value. ZOOM/XMP terminated when a better or equal solution was found. Thus

ZOOM had three options for an integer solution.

1) An integer LP solution.

2) An integer heuristic solution or

3) A branch and bound solution.

As shown in Table 3.2, test problem VIII required over 1400 CPU/seconds to find a solu-

tion. Consequently, larger problems were not tested with ZOOM. Three smaller test problems

(test problems V,VI and VII) were also tested with ZOOM. In Table 3.2 the number of pivots,

the number of swaps done to achieve feasibility (Feas Swaps), the initial feasible solution (IFS)

time and objective value (OBJ(I)), the number of swaps made to improve the solution, the final

(FFS) solution time and objective value (OBJ(2)), as well as ZOOM solution times are presented.
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TABLE 3.2

Computaioal Data. All U=mes in CPU seconds.

Pob Simplex Feas IFS OBJ(1) Improve FFS OBJ(2) ZOOM* ZOOM
Pivots Swaps Time Swaps Time Soln Time

I B 598 11 4.66 585 12 7.22 722 NA NA
I RI 424 10 3.67 1984 22 7.61 2473 NA NA
I R2 464 9 4.03 2094 18 7.73 2404 NA NA
H B 278 1 1.83 566 7 4.05 656 NA NA
1 R1 234 1 1.83 1849 11 4.10 2008 NA NA
II R2 289 6 2.50 1910 22 5.94 2276 NA NA
I1 B 279 5 2.35 699 7 5.88 763 NA NA

HI RI 346 7 3.95 1702 13 6.40 2033 NA NA
11 R2 267 10 2.53 2145 11 4.85 2394 NA NA
IV B 54 2 .30 262 2 .43 289 HE 64.13
IVRI** 174 1 .72 608 2 .80 715 HE 82.7
IVR2** 198 0 .85 604 1 .95 648 BB 75.75
V 87 12 .58 12 0 .58 12 LP .63
VI B 35 0 .18 148 0 .18 148 BB 526.80
VI RI 42 0 .34 738 0 .34 738 BB 284.04
VI R2 36 0 .26 846 0 .26 846 BB 1573.23
VII B 22 0 .04 182 2 .09 192 LP .85
VII RI 26 0 .09 344 1 .12 360 LP .93
VII R2 26 0 .14 385 1 .18 395 LP .98
VI B 94 4 .61 214 2 .83 223 BB **
V1IRI 101 3 .66 986 1 .88 1022 BB 1416.95
VIIIR2 98 1 .54 1032 2 .78 1083 BB **

* NA - Problem not run

HE - Solution found by ZOOM heuristic
LP - All integer LP solution
BB - Solution found by branch and bound

**Problems IVRI and IVR2 both had infeasible solutions without categorizing. The times above
are for PAS with job categorizing active to enforce feasibility.

Problems VIII B and VIII R2 both terminated after exceeding a 10000 LP iteration limit without
exceeding or matching the incumbent value.
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The solution times of the scheduling algorithm are highly dependent on the structure of the

problem. Problems I - V were intentionally structured "hard" to give a large degree of overlap

between jobs. This was to both validate the swap routine and the basic scheduling logic. Swap-

ping though took only a small portion of total run time ( see Table 3.3). For the scheduling algo-

rithm the largest portion of computational time was spent in pricing arcs during the network sim-

plex portion of the algorithm and in attempting to find improved solutions after the network sim-

plex algorithm terminated. Pricing operations occur both before and after the swap routine starts.

Though arcs with a value < - M were not priced they were scanned to see if their arc prices were

!s -M. Pricing after the swap routine is entered could be eliminated all together by using the

swap routine to reassign jobs freed from pilots as a result of the availability of feasible arcs. This

procedure was not followed in anticipation of the swap routine taking longer to execute than it

does and the anticipation that several jobs and arcs would enter into the simplex iteration from

the swap routine (while in fact few do).

As mentioned earlier ZOOM was only run on very restricted size problems due to excessive

memory requirements and run times that grew exponentially on any problem requiring branch

and bound. The ZOOM solution times to problems IV and VI are considerably longer than the

scheduling algorithm. Though the ZOOM heuristic found a good solution to problem IV reason-

ably fast this time is still too long to be practical on a PC. As expected times grow exponentially

under conditions where branch and bound was required to get a solution ( see problem VI). As

both problems V and VII had natural LP solutions the ZOOM times were fast but still longer than

the scheduling algorithm. Even so neither of these problems represent realistic schedules in

terms of the number of jobs to be scheduled or more importantly the number of integer variables

(arcs) that normally exist. Interestingly enough is the inverse relationship between the number of

arcs, ZOOM, and the PAS codes. With a large number of arcs the scheduling algorithm is more

likely to find a solution without having to resort to many swap iterations to achieve a feasible
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solution. However, ZOOM works best under conditions where there are few variables (arcs) and

thus few constraints.

3.3 Conclusions

These times show that one can quickly achieve good solutions with the scheduling algo-

rithm. Initial solutions were on average within 9% of the final improved solution in terms of

objective values. However this does not indicate how close the final PAS solution was to the true

optimal solution. The ZOOM routine did give LP solutions to problems V through VIII. This pro-

vided an upper bound as no integer solution can exceed the LP solution. For problems VI and

VIII this upper bound was on average 15% more than the final PAS solution found. Again

though, this is not necessarily indicative of how close the PAS solution was to the true integer

optimal solution. Since the ZOOM code found LP integer solutions to problems V and VII one

knows the true optimal value in these two cases. In both of these problems the PAS algorithm

also found the optimal solution. However the small size of these problems and the high ratio of

pilots to jobs made the initial solutions to these problems exactly the same or very close to the

LP solution. This will not in general be the case. In the full size problems II, and III the initial

PAS solution was 10% to 15% worse than the final PAS solution found. Again one does not

know how close the final solution is to the true optimal. Yet how much better the improved solu-

tion is over the basic solution much less how much better the "optimal" solution is to the final

PAS solution is also a subjective judgement. The improvement routine and "optimal" solutions

tend to swap jobs out from low value users and assign them to individuals with high arc prices. A

few individuals are assigned all of the jobs. Though it is true that these individuals with high arc •

prices need to fly more than those with low arc prices, there is a point of diminishing marginal

returns. These diminishing returns are not reflected in the formula tions for BY . A scheduler is

likely to prefer a schedule with individuals assigned one job each rather than one where just a

handful of people are assigned all of the jobs. To counteract this one could, at the expense of
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increased complexity, data storage, and run times, change the B,, between iterations (just as arc

prices are changed to < - M due to infeasibility ) to reflect job assignments from previous itera-

tions of the PAS algorithm. By incorporating an appropriate penalty term one may price arcs in

such a way that an individual is unlikely to be scheduled twice. However it is not clear that such

a scheme is desirable either. Some unit schedulers may argue that concentrations of training such

as may occur without a penalty term incorporated into Bij are in fact good. This would allow an

individual to build on lessons which are fresh in his mind. In addition those who are not

scheduled have an entire day free without interruption and thus are able to accomplish their ancil-

lary duties efficiently. As the pricing schemes will get updated the following day anyhow, these

individuals will likely fly tomorrow. Thus in the end everyone gets the same number of jobs but

assigned in a more efficient manner [22]. This is why an interactive system has been developed.

A scheduler is able to generate a range of solutions quickly and then use his judgement to decide

what is best. These interactive aspects are discussed further in chapter 4.

gb.
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TABLE 3.3

Breakdown of Execution Times

Prob Pivot Price 1 Price 2 Assign Change Swap Improve
I B .96 .79 1.41 .26 1.12 .10 3.80
I RI .65 .86 .88 .22 .93 .10 5.17
I R2 .82 1.11 .98 .24 .77 .09 3.67
II B .41 .67 .32 .12 .31 0 3.32
II RI .38 .69 .31 .16 .30 0 3.30
II R2 .43 .58 .51 .19 .71 .07 4.47
I B .53 .67 .29 .17 .60 .06 4.82

Ill Ri .66 .96 1.25 .20 .77 .08 3.62
[] R2 .46 .76 .53 .19 .47 .11 3.35
IV B .05 .11 .03 .02 .05 .02 .22
IV RI .21 .13 .24 .03 .02 .01 .17
IV R2 .10 .59 0 .07 .02 0 .19
V .09 .10 .11 .04 .03 .03 .01
VI B .09 .08 0 .01 0 0 .14
VI RI .07 .11 0 .02 0 0 .14
VI R2 .06 .05 0 .02 0 0 .13
VU B .03 .01 0 0 0 0 .07
VII R1 .05 .04 0 0 0 0 .06
VII R2 .05 .08 0 .01 0 0 .07
VIII B .18 .10 .14 .05 .09 .03 .45
VIIRI .13 .25 .09 .05 .12 .02 .41
VIIIR2 .18 .14 .08 .05 .08 .01 .45
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CHAPTER 4

INCORPORATING GOALS AND LONG RANGE USES

Having concentrated up to now on the basic model formulation and how it might be used to

create a daily schedule this chapter links these final results to the beginning inputs. By approach-

ing the problem in this reverse chronological order one can see how the scheduling system will

interact with squadron supervisors and schedulers to aid in squadron training management.

4.1. Incorporating Goals

The model is designed to interact with squadron supervisors to produce a schedule which

best meets stated squadron training goals. Supervisors form these goals based on direction from

higher headquarters (HHQ) and what they perceive as areas to emphasize in training. Goals are

first sent down from the next higher level of supervision, normally wing headquarters. The squa-

dron then sets specific goals designed to meet and enhance these wing goals. Finally each func-

tional area in the squadron emphasizes those squadron goals which their particular functional area

deals with (see Appendix A).

One can put many of these scheduling goals into the daily scheduler. To do so requires care-

ful structuring of the prices of particular pilots performing specific tasks and a basic understand-

ing of how the scheduling algorithm works.

First , as stated earlier, many tasks are directed by Air Force regulations and manuals.

Pilots must accomplish specified levels of events over a 6 month training cycle (see Appendix C).

Many of these events are not scheduled but occur during regularly scheduled missions. VID

(Visual Identification of an "enemy" aircraft) for example can occur on any mission where

meteorological conditions allow. Generally pilots are responsible for accomplishing these events

during their missions. Units receive a computerized listing which shows how many and what
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events each pilot has remaining to accomplish during each 6 month training cycle. Generally

there is no problem in accomplishing these unscheduled events as pilots are daily aware of what

events remain and have enough flexibility during normal missions to accomplish them.

Some events can cause problems. For example, airborne refueling requires an airborne

tanker aircraft which must be coordinated for and scheduled from an outside organization. Given

the difficulty in acquiring such assets, the sorties during which air refueling occurs are generally

scheduled based on the need for air refueling training versus the need for training in the sortie

type. Sometimes however the sortie requires scheduling priority. Selecting one or the other a

priori is difficult since the relative importance of the event versus the sortie depends not only on

how many events or sortie types are required to fulfill remaining requirements but how many of

the sortie types will be scheduled in the future. In the program developed here the event and the

sortie during which it occurs are combined to form a new and unique job. A pilot must be

qualified to perform both the sortie and the event to qualify for the new job. His price of per-

forming the job becomes the combined weighted price of performing the job and the event. How

the event and sortie are weighted is discussed later.

Another factor affecting price is the currency requirements. For example, pilots are required

to fly at least one air combat training sortie every 30 days. If not, they are considered noncurrent

and thus nonproficient in air combat training. If a pilot is noncurrent he must fly with an instruc-

tor pilot, a limited resource, to regain his currency. Thus a scheduling goal is to not only ensure a

pilot accomplishes the specific number of events but maintains his currency.

In addition one must also consider the actual number of events accomplished. As shown

later a distinction is further made between the number of events accomplished below the levels

directed by regulations and the total number of events accomplished above these levels.

Finally, in addition to the regulation directed requirements, there are usually subjective

requirements imposed by squadron supervisors. These too can be structured as mandatory
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training requirements, though care must be taken in doing so tht actual HHQ directed mandatory

training is not lost. For example a commander must ensure that in upgrading all new pilots to

combat ready status in less than a squadron mandated 45 days that he does not adversely affect

the combat readiness status of his current pilots by preventing them from meeting currencies on

their proficiency training.

4.1.1. Setting Prices

The following is an example of how a commander may input his goals to the scheduling

system. Say event A must be accomplished 6 separate times over the 6 month cycle. One could

represent the price of pilot i doing this event as

Bo = %of events or sorties remaining

for the 6 month training cycle.

One can further modify this price by adding in a training period factor. For example

Bj % events or sorties remaining
- %of training period remaining

Call the above term the Pro Rata Factor (PRF) as it represents a prorata training accomplishment

measure. For example, if one has I of the 6 month training cycle left, with -I of the events
3 3

remaining this gives a Byj of 1. With - of the training cycle and - of the events remaining one
3 3

1

has a By of 2. With I of the events remaining one has By .5. Thus Bij represents deviation6

from prorata training accomplishment as a deviation ± from 1.0. Once all required events for the

training period are accomplished, PRF is set to zero, as there is no training left to be met in the

training cycle.

One may think of the 6 month training cycle as a currency period in which events must be

completed by 30 Jun or 31 Dec. In addition some events have currencies established by higher

headquarters (HHQ) which may be shorter or longer than the 6 month cycle. Furthermore, squa-
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dron supervisors can impose their own currencies more restrictive than those of HHQ. Since all

currencies are not the same and some events are more difficult to accomplish over a short time

frame one can modify B, to reflect currency weighting by adding the following currency factor.

1

Currency Factor ( = % of Currency Period Remaining

Thus Bij becomes

Bj = PRF+CF

Note the currency period is updated each time an event is accomplished. If there is no

specified currency period the currency period is set equal to the training period and remains equal

to the percentage of the training period remaining throughout the training cycle. As the above

denominator term goes to zero B0i is set to M (recall Bi0 is a price thus it is actually -M in the

code). This will ensure a pilot is scheduled as soon as possible if he becomes noncurrent in an

event.

One should also include a factor which captures how recently a pilot flew. Note this is

somewhat different than percentage of currency period remaining in that it is a measure of how

long it has been since a pilot flew rather than how long he has remaining to accomplish a specific

event. For example, assume Pilots 1 and 2 both must accomplish an event with no currency

specified but with a training period set as a maximum of 45 days. Pilot I last flew 5 days ago and

Pilot 2 last flew 10 days ago. Both pilots have accomplished 50% of training required and have

44% (20 days) of their training period remaining. Under the original formulation

Bij - PRF + CF

which gives us

B, - .50/.44 + 1/.44 - 3.3

for both pilots 1 and 2. However most manual schedulers would fly pilot 2 first since he has not

flown for the longer period of time. Thus a recency factor (RF) is added where
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RF = # events req • # days since last flown
# days in training period

Finally one should also address the question of total event accomplishment beyond the

number required during the training period. Thus a third factor is added to reflect total event

accomplishment

Event Factor (EF) =i
# of events accomplished - # of events required

100 is used a h
where Zj is a scaling factor for job j. For the F-15 TFS a Zj = # of events required as the

highest number of events required for any event is approximately 100. Thus Zj represents a nor-

mative weighting for a particular event j. If the number of events accomplished < events

required EF = 0. This gives us a final B, of

Bij = PRF + CF + RF + EF

where

% events Rem .ifEF .

P = % training period rem
0 otherwise

CF = I
% currency period rem

R.F # events req • # days since last flown
# days in training period

events req # events accomplished - # events req if # events acc> #events req'd
0 otherwise

i,
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4.2. Determining Sortie Types

As mentioned in the introduction squadrons have relatively little control over number of

flying hours and sorties flown. However, they can affect what type of sorties are flown. Here the

flexibility of the ransportation model proves useful. On average a pilot performs 7-8 scheduled

jobs a week of which 3-5 are flying sorties [22]. In aggregate squadrons typically fly around 24

sorties a day. Using this information one can quickly produce a list of what flying jobs would best

benefit squadron needs for the coming week. One starts by entering all jobs with a known

demand level. For example certain jobs may be scheduled to occur weeks or months in advance.

Thus their actual demand levels are known weeks or months in advance. Using the above infor-

mation one may formulate the sortie prediction problem into a transhipment network as follows.

5ar

s,*

s 4

FIGURE 4.1. Long Range Sortie Projection: A Transhipment Problem
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A link connects all actual job nodes to a "daily sink". The daily sink demand level is set to

D" - ID of all jobs, where D' is the average number of flying sorties a day ( eg 24 ). The

demand levels for each job are 0 unless a specific demand level is known for a given job on a

given day. The original sink remains to absorb excess pilot supply ( in this formulation supply

always exceeds demand ). One solves this transhipment problem and gets a prediction of the

"best" D' sorties for any given day. Note that only one transhipment problem need be solved per

day as there is no swapping or improvement routine. A similar procedure could be used for

ground jobs. After each daily run pilot prices are updated based on the sortie predictions. Then

the next day's prediction can be run as described above. Thus a week's aggregate sortie predic-

tion entails the solution of 5 small transhipment problems. One may continue this procedure as

long as desired. As pilot qualifications and availability changes, however, these projections

become less accurate. A reasonable period of time is two weeks based on the author's practical

experience. As mentioned previously the scheduling environment in the TS is quite dynamic.

Even for aggregate sortie projections, predictions beyond two weeks tend to be so fraught with

error as to have little use. Armed with this aggregate listing of future job requirements squadron

schedules could then request an intelligent sortie mix from the wing schedulers.

The wing (the next level of supervision above the squadron) takes these sortie requests and

assigns aircraft specific areas to operate in. In addition they dictate aircraft takeoff times to coin-

cide with the times the airborne operating areas are to be used. Wing scheduling also coordinates

outside assets which are used in the support of local training. After the wing scheduling shell ( a

spreadsheet listing operating areas, mission (job) types, and takeoff times ) is produced it is fed

back down to the squadrons who then assign pilots to this scheduling shell as described in Section

2. Thus one has moved beyond the daily scheduler to an aid which helps determine schedules

weeks in advance. Note however that scheduling the system has gained more generality as the

time horizon expands. One is not scheduling specific pilots against specific jobs but only
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predicting in aggregate numbers what types of flying sorties would be best for the squadron.

4.3. Creating Job Types

By again increasing the generality one can extend the time horizon of the model even

further, to not only predict how many of what type jobs one needs to schedule, but to predict what

type of jobs one needs to create. To understand this concept recall that in the daily scheduling

model pilot qualifications and availability are input to schedule pilots into specific job demands.

Availability is then updated and the process repeated until all jobs are filled.

Similarly, prior to the start of a 6 month training cycle, one can input long range availability

of pilots. Inputs affecting this include projected arrivals and departures, projected leaves (vaca-

tions), and projected TDYs (temporary duty away from the home station -- nonflying). From this

one can create an availability roster. In fact, this is done within the scheduling program on a

daily basis. As pilots are assigned jobs they are marked non-available during the time periods the

job occurs. In addition manual inputs can be made to the availability roster such as when a pilot

cannot fly due to illness or a pilot's request for personal time off. Current pilot qualifications of

pilots should also be entered. This is easily available through a "letter of Xs". A letter of Xs is

literally that, a table with a big X in rows marked by a pilot's name under a column whose head-

ing is a job that pilot is qualified to perform. This listing is maintained in all TFSs. (see Appen-

dix D)

In addition supervisors normally specify the ratio of specialized qualifications they wish to

maintain in their squadrons. For example, a commander may wish for 50% of all pilots to be

flight lead qualified, 25% instructor pilot (IP) qualified, etc. Based on current qualifications and

such desired manning ratios, the supervisor is then presented with an overage or underage of cer-

tain qualifications in future months based on projected personnel changes. An underage becomes

a demand for a new job. For example, if due to departures, a squadron is going to be short two

IPs in October a demand is created for two IP upgrade programs with a completion date of

=A~r ' 'n tf t
-
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October. Previous input from the Supervisor tells the long range scheduler that an IP upgrade

should take no longer than, for example, 60 days Therefore the long range scheduler creates a

demand for two IP upgrade "jobs" starting 1 August. This information is returned to the super-

visor who then decides who will enter upgrade training on those dates (though one could program

the model to assign pilots to such jobs, much subjective evaluation goes into selecting such pilots

thus actual assignments are better left for the supervisor to determine). Since upgrade training

draws away sorties from daily training (concentrating them in the IPs who conduct upgrade train-

ing) it is desirable to "smooth" out upgrade training and avoid concentrations. These concentra-

tions occur naturally as old pilots leave and new pilots arrive on a yearly cycle with especially

large concentrations every three years (these cycles are due to personnel rotating policies). Thus

one needs a long enough time horizon to foresee these "humps" and a programmed logic to

spread projected upgrade training throughout the year. A one year time horizon should prove

adequate for these purposes. With these new jobs created they are fed to the short range

scheduler which produces the squadron job projections sent to the wing. Thus these new jobs

show up on the scheduling shell from the wing. Then the daily scheduler assigns pilots to these

jobs.

4.4. Other Uses for the Long Range Scheduler

One could also include projected squadron deployments in the long range scheduler. Most

TFSs deploy half or all of the squadron 2-4 times a year to another base to participate in military

exercises or familiarize themselves with contingency operating areas. Generally participation in

these exercises is tracked as any other job, thus the transportation model can be used to recom-

mend assignment to these exercises based on projected availability and past participation (if any).

A common problem when only part of a squadron deploys on such exercises is that an inadequate

mix of pilots remain to accomplish daily training at the home base. By specifying a particular

mix of pilots and their qualifications required for these deployments and for homebase training
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(i.e. by specifying what jobs to fill) one can get a fairly good idea who will deploy and who will

not.

This again leads to another advantage of placing the model on a PC. Squadrons can deploy

their PC with them. Thus training accomplishment and scheduling can be accomplished at the

remote site as at the home base. One disadvantage will be the general impracticability of tying in

to the mainframe computers located at home bases over telephone lines for retrieval of the data

necessary to track currencies and job accomplishments. One could circumvent these problems by

performing a database update just prior to deployment. Since most deployments do not last more

than 30 days the scheduling irregularities generated at the deployment site due to an inaccurate

data base should be minimal. If direct database updates were desired one could tie in by modem

to the mainframe computer located at most home bases for a daily update of job accomplishments

and currencies. This can be done via the military AUTOVON network (similar to commercial

WATS lines) even from overseas locations. Again, however, this system would not be reliable.

The AUTOVON system is especially "noisy" and subject to sudden preemption from higher

priority calls.

4.5. Interactive Aspects

Many of the interactive aspects of the scheduling and training management system have

been previously discussed. In this section the interactive role of the human in the loop is

enhanced to both show the advantages and disadvantages of the scheduling system.

The first interactive role involves establishing the price structure which will reflect the train-

ing goals of the squadron. Again careful considerations must be given to ways in which price

structures will interact with each other in bringing about scheduling tradeoffs. As shown before

(see section 2.4.1) one can develop graphs to aid supervisors in the selection of the appropriate

parameters. However such graphs will have a limited benefit. One can only show the interaction

of a limited number of parameters while many exist. Studies have shown that individuals are
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usually saturated with more than 5-7 decision variables to decide among. In addition one risks so

engrossing the model in complexity that the users cannot understand it and subsequently are

reluctant to use it. The price structure described in Section 4.1.1 is a compromise between too

much versus too little complexity. Asymmetries will likely occur. To allow the user to "fine I
tune" his system one may adjust the price structure by inputting user selected parameters. How-

ever in the final analysis one is likely to discover a moving target, one which, regardless of the

final price structuring used, faces the very real potential of producing a solution in which a human

can intervene and produce superior results in just a few seconds. This model does not seek to

eliminate such possibilities. The human must be involved to make it work. This interactive role

extends beyond simply defining price structures and reliance on regulation directed event levels.

Referring again to the long range uses of the system, supervisors must ensure that their

desired manning ratios and personnel mix on deployments actually reflect realistic goals. This in

turn influences the determination of certain job creations. Once jobs are created they should be

filled or the situation which led to their creation will be left unresolved. This in turn may create

future training and scheduling situations which cannot be met by available resources. In short,

the users must understand the system, the logic of its results, and once understanding this logic,

implement the results or change the logic. This logic will not be static. Goals and personal taste

will change both with time and new leadership. Thus this model is structured with the anticipa-

tion of continuous review and a relative ease to change parameters to meet these changes and

respond to inadequate results.

The second area of interaction occurs with data entry. Obviously incorrect or inaccurate

data produces poor results. This system has been produced with available data systems in mind

to minimize additional data requirements above those that presently exist (which is not to say that

present data tracking is either adequate or excessive). Inputs are necessary for both long and

short range uses. None of these inputs are beyond present day requirements. The one area of
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change is the requirement for some inputs to be entered into a computer versus an entry onto a

piece of paper.

With the data and squadron level supervisor inputs the long range scheduler produces an

aggregate sortie prediction for some specified time frame. This listing will predict the seven or

eight jobs for a pilot (in the given example) for the coming week. However this prediction is not

fixed. Flight commanders ( the first level of supervision within the squadron ) should be queried

on a weekly basis about any inputs they have for schedulers. Flight commanders in turn then ask,

or should ask, their subordinates about what areas of training they wish to emphasize. In fact

such a system is currently in force in most TFSs as schedulers seek flight commander inputs

weekly to aid in the scheduling of their flight assigned personnel [22]. With flight commander

inputs the aggregate sortie prediction is further refined by the schedulers to reflect real world

scheduling limitations and opportunities such as the availability of outside assets to support train-

ing. After squadron supervisor approval, this aggregate sortie prediction is then forwarded to the

wing, where, as described earlier, a scheduling shell is created which is then passed back to the

squadrons.

With the shell and an updated list of pilot availability and job qualifications the scheduler is

ready to assign individuals to jobs. First, manual scheduling inputs are made. One does not

allow the wing commander to be scheduled by the, though logical, apparently random process of

an optimizer. Such individuals generally tell schedulers where and when they will fly. Other rea-

sons exist for making such manual inputs. For example, supervisors may insist that two individu-

als fly together while the pricing process described earlier only increased the possibility of two

individuals flying together. Such scheduling inputs can be made by fixing variables at a certain

level. Essentially this entails making these pilots unavailable during the time the job they are

assigned occurs, the elimination of the assigned job from the job list, and an appropriate

modification of the pilot's B5j for that particular job type. Thus, while the job assignment prints
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out with the other jobs in the solution report it never actually is "assigned" by the algorithm.

With fixed inputs the remaining schedule is run much as described earlier under the daily

scheduler algorithm.

When an initial feasible solution is found or no more feasible arcs for remaining jobs exist

the solution prints out. In most cases such a solution will be acceptable or, if infeasible, easily

modified by manually relaxing constraints to remove infeasibilities. If so the scheduler ter-

minates the algorithm which has either proceeded on into the swap routine, ( if the initial solution

is infeasible) , or into the improvement routine. With each improved feasible solution the solu-

tion is presented. Again the scheduler can terminate the algorithm at any time or continue on until

the algorithm terminates under its own logic as described earlier.

These results are then passed on to the squadron supervisor for final approval. Should the

scheduler or squadron supervisor wish to make changes they can do so manually or with the algo-

rithm. One can swap a pilot out of or into a job with the swap routine. If possible the swap rou-

tine runs until a feasible solution is found or termination criteria is met. With the final results the

solution is posted and the availability file updated in anticipation of the next days scheduling

input.

As the day goes on scheduling changes may occur. Again the algorithm allows locking in

variables which have not changed and reoptimizing the rest or conducting individual swaps. The

procedure should be fast enough where schedulers can produce complete daily schedules quickly

on a PC computer.

Again note the high level of user interface. This not only allows greater flexibility but the

ability to avoid greater complexity in the model structure while still providing good results in a

short period of time.
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4.6. Scheduling System Summary and Uses

To summarize the planning and scheduling system:

1. Inputs are gathered prior to start of the 6 month training cycle but include personnel projec-

tions up to one year in the future. These inputs should be updated monthly thus once ini-

tiated the long range scheduler acts constantly. Inputs include:

A. Projected departure and arrival of pilots

B. Projected TDYs

C. Projected leaves

D. Desired manning ratios

E. Contingency tasking manning requirements

F. Squadron established currencies

G. Squadron established length of upgrade training

H. Squadron specified sortie mix requirements

I. Job weights and scaling in accordance with stated goals

J. Dates of projected deployments and manning stcture for deployments

2. With these inputs the long range scheduler returns:

A. When pilots should enter upgrade training and how many

B. Projected manning ratios and deviation from goals

C. Joint leave, TDY, and recommended deployment schedule

D. Contingency manning levels incorporating projected upgrades

3. Squadron supervisors review this projection and:

A. Select pilots for upgrade training

B. Alter TDY leave schedules to avoid problems with required contingency manning
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C. Make tentative selection of pilots for deployments

D. Establish pilot pairings if desired

4. This information is fed to the short range scheduler which projects aggregate sortie mix one

week to a month in advance.

5. This information is relayed to the wing. The wing combines the squadron's inputs and

schedules range air space, and mission types producing a scheduling shell.

6. This shell is passed back to the squadron where the schedulers

A. Manually schedule pilots with nonprogrammed specific requirements

B. Update nonavailability request from individual pilots

7. With this information the daily scheduler

A. Inputs the daily update of pilot qualifications, pilot availability, and the jobs to fill

from the wing shell

B. Writes a daily schedule

S. All levels feed back information required to update long, short, and daily schedulers input

files.
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SUMMARY AND CONCLUSIONS

The advancements in modem aircraft technology have dramatically increased the capability

of these aircraft as well as the degree and complexity of the training required for the

crewmembers who fly them. During the last 20 years most tactical aircraft have also changed

from two seat (two crewmembers) to single seat (one crewmember) aircraft. These factors have

combined to create a tremendous burden for crewmembers to accomplish and for squadrons, with

their restricted manning, to manually schedule. This paper has outlined a training management

system which appears promising in aiding Tactical Fighter Squadrons in the scheduling and

management of required daily training.

By formulating the scheduling problem as a transportation network, one is able to take

advantage of the speed and efficiency of a primal network simplex algorithm in assigning pilots

to jobs. The nature of the daily scheduling problem generally allows the presentation of good

results very quickly. However the procedure has the robustness to resolve initial infeasibilities

and provide the user with increasing objective value alternative solutions. This procedure contin-

ues until the algorithm reaches its own termination criteria, the user stops the problem because of

the acceptability of the current solution, or time constraints are met.

A key feature of the scheduling system is the ability of unit schedulers and supervisors to

interact at several levels of the scheduling process. Given the complexity of scheduling training

it is doubtful that all appropriate constraints can be modeled. Thus this interaction is a necessity

to ensure that scheduling and training goals as well as a degree of flexibility is reflected in the

scheduling process.

The training management and scheduling system described offers the potential for

improved training in a typical TFS. Further research is needed in determining a good measure of

how close the objective function is to an optimal value and then guiding the algorithm towards
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the optimal within reasonable run times. Along this vein, more advanced improvement pro-

cedures such as K-opt methods may prove promising in providing higher objective value solu-

tions within reasonable run times [39]. Given the highly degenerate nature of the solutions to the

transportation problems a primal-dual network algorithm may be more efficient than the primal

method employed here [401. In addition, more research is required into integer based algorithms

which give quick suboptimal solutions to see if the assumptions are true that such codes would be

too slow and too complex to run on a PC. Also other heuristics exist which may work well for

this particular problem [7][271. Finally this model is based on deterministic inputs. The possibil-

ity exist for significant distortions in the daily schedules due to a lack of adequate accounting of

future requirements though the arc price structures do to a degree take into account future effects.

However more research can be done to investigate the possibilty of trying to develop a stochastic

system without unduly complicating the scheduling algorithm or increasing its run times beyond

the feasible threshold for a PC.

Actual implementation of this heuristic on a PC in a production environment requires

further enhancements in software to provide a greater degree of user friendliness and efficiency.

In addition interfacing between the data base on USAF mainframe computers and squadron PCs

requires farther development. Actual implementation also requires more face to face interaction

between the developers of the model, squadron scheduler's, and supervisors to resolve conflicts

and inaccuracies.

To date results have been encouraging both in the quality of the solution and the speed in

which it is found. As of the writing of this paper there are commercial contractors who have

approached the Air Force to develop a scheduling system though lack of published material and

proprietary concerns prevents a direct comparison. Yet this is indicative of the interest and the

probability that someday soon USAF squadrons will operate under some form of computer

assisted scheduling and training management.
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Typical ITS Goals
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TFS

1986 GOALS

MISSION

TFW/DO Goal: Improve TFW capability to deploy and fight worldwide

TES Objectives:

(1) Fly mixed force (F-151F-16) training during at least one Aggressor visit.

(2) Deploy every Mission Ready/Mission Support squadron pilot and every squadron

enlisted member on at least one composite force exercise.

(3) Develop quarterly training scenarios for all Oplan-tasked TFS deployment bases.

(4) Fly the FY86 Flying Hour Program out to zero hours/sorties.

TFW/DO Goal: Improve local DACT and training realism.

TFS Objectives:

(I) Fly at least 60% of all squadron ACBT sorties against dissimilar opposition (MQT sor-

ties excluded).

(2) Provide coordinated (DOW, IN, DOT, DOX) air tasking orders for an average of at

least one mission (two- or four-ship flight) per local training day.

A-2



PEOPLE

TFW/DO Goal: Enhance airmanship.

TFS Objectives:

(1) Average less than 45 days for MR upgrade of newly-assigned RTU graduates.

(2) Review pilots for upgrade to flight lead and instructor pilot as soon as they meet
minimum criteria. Select those best qualified.

(3) Schedule one "down" Friday per month for ATWATS, Flight Lead seminars, etc.

TFW/DO Goal: Take care of people, their families, and their environment.

TFS Objectives:

(1) Schedule maximum crew duty day of ten hours concurrent with two-go days, except for
sortie surges.

(2) Reward outstanding performance by flying maximum supportable maintenance appreci-
ation sorties (average 3/month).

(3) Encourage PME/Off-Duty education participation by accommodating class schedules to
the maximum extent possible.
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TFS SCHEDULING 1986 GOALS

I. Fly the FY86 Flying Hour Program to zero hours/sorties.

2. Fly at least 60% of continuation ACBT sorties against dissimilar adversaries.

3. Provide the Training Shop with an average of at least one mission (two or four shop) for air
tasking orders per local training day.

4. Maintain our current positive Eagle Elite sortie position so as to continuously be permitted
to fly an average of at least 3 Maintenance Appreciation sorties per month to enhance
TFS/AMU relations.

5. Strengthen TFS/GCI interface by flying a minimum of one GCI controller per month in a D
model on an ACTT/DACT sortie.

6. Complete all Stan/Eval checkrides before the fifth month. Complete all prerequisites prior

to the end of the third month.

7. Complete all MQT training within an average of less than 45 days.

8. Manage the annual Flying Hour Program to schedule one "Down Day" on one Friday per
month for ground training and commander directed meetings.

9. Maximize the use of the two go schedule, lAW TAC goal, while maintaining a maximum
crew duty day of ten hours.

10. Encourage PME/Off-Duty education participation by accommodating class schedules to the
maximum extent possible.

11. Efficiently schedule resources to attain GCC level B for 75% of MR pilots.

12. Incorporate squadron small computer resources into the schedule planning process.
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DUTY SCHEDULER/OPS SUPERVISOR

The Day Prior:

1. Receive a hand-off briefing from the current duty scheduler concerning the next days
schedule and any pertinent considerations to include priorities and scheduling rationale.

2. Contact the Base Weather Forecaster and obtain the forecast for the next flying day.

3. On the basis of this information, determine the need for back-up scheduling plans to
include:

a. WX Category Changes.
b. Mission Changes.
c. Range Space Changes.
d. Configuration Changes.
e. Possible WX adding to the PM Schedule.

4. If the probability of adverse WX, or other extraneous inputs (i.e., VIP's, or exercise) is
high, identify primary back-up pilots and notify these individuals of your plans.

5. Take the schedule and availability sheets home with you. If the need arises, you will be
called.

The Day Of:

1. Call WX before you leave home -- you may need a head start.

2. Arrive NLT 15 minutes prior to the first briefing.

3. Call the AMU and confirm the following:

a. Configurations.
b. Tub Lines.
c. Number of Spires (A/A and A/G)
d. ICT Lines.
e. V.IJP.'s

4. If the configurations are not right or other difficulties are encountered, note it in the Green
Record Book so it can be followed up.

5. Take the previous day's schedule and transfer all the sorties flown to the weekly summary
so we have a running goal for the week for each pilot. Then take the schedule and file on
Chief of Scheduling desk.
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6. Review the Ops Scheduling Board for all Upgrade sorties flown and ensure that Training
has updated the Training board. Note any discrepancies and give to Chief of Scheduling.

7. As changes to airspace, takeoff times, etc., occur to future days schedules ensure that the
changes are recorded on the grease board and the MATS and the Wing Printed schedule (if
it is available). All of these sources must be identical.

8. Standby to work the daily fires that occur (Personnel changes, Airspace changes, and
Management decisions (Go/No Go, Pit, ICT, etc.)

NOTE: Let the Ops Specialists do their jobs unless you are not getting results fast enough.
If you need higher level guidance talk to the P Sup.

9. Start working the next days schedule once today's situation is in hand and you have com-
pleted the above tasks. The best time to get started is early in the morning prior to outside
agencies calling us about their screw ups. Remember the systematic approach will get you
to the finished product earlier, and that gathering all the information to build the schedule,
prior to just throwing names at the schedule, will get you a quality product sooner. Use the
following steps to ensure all scheduling factors have been considered.

A. Make a copy of the next day's schedule from the Wing printed schedule (If it is available --
usually after Monday) or the handwritten MATS if Wing printed is not available.

B. Get a blank copy of the ground activities sheet (lists P Sup, Duty Sch, SOFiRSO, RTO,
Simulators, and Meetings). List the requirements for the duties by the applicable time
period without listing the names to fill these requirements. Get all the meetings that are
printed on the large calendar on the wall, as well as the regularly scheduled meetings, which
should already be printed on the schedule board.

C. Get a blank deconfliction sheet and list all the Leave/TDY's (Lzave/TDY information is
posted next to the schedule boards).

Review the schedule book for the applicable week for any extra requirements (VIP Flights,
Eagle Elites, Higher Hq Flyers, Statics/Flybys).

D. Review the Flight CC scheduling inputs and attempt to incorporate their inputs according to
the priority listed.

E. Review Life Support requirements sheet and the Calendar of Training dates. Schedule as
many of these requirements as the schedule will allow.

F. Start building the schedule by first listing the hard ground requirements and then fill in the
flying schedule by using formed elements when able.

G. Fill in the deconfliction sheet as you build the schedule step by step. This will help to make
changes to the work as you change the schedule or someone comes in with a new input.
Subsequent supervisor review and the changes which may result can also be handled much
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faster. If the deconfliction sheet is not accurate you will screw the next day's duty
scheduler who may need to make a quick change to the schedule.

H. If it is Tuesday attend to 0930 Mx/scheduling Meeting held at the DCM Conference Room.
Bring the folowing items to this meeting: The Green Record Book, this week's MATS,
and next week's MATS. Be prepared to discuss upcoming taskings for the TFS record any
information in the Green Record Book.

1. Attend the daily 1400 meeting to reconfirm the next day's schedule (number of lines,
configurations, configuration changes between go's, etc.). These items should be discussed
with the AMU schedulers prior to the meeting. Missile availability can be obtained for
AMU schedulers or from the AMU directly.
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DAILY SCHEDULING CHECKLIST

I. Review the previous days flying schedule and record the number of scheduled/flown sorties.

2. Advise the Operation Clerk to erase yesterday's schedule.

3. After validating the previous days schedule -- use it to do the bean count for who flew, who
served RSO, RTO, and SOF.

4. Look at the bean count and see who needs to fly. Evaluate this against other scheduling
priorities directed from the TFS/CC, DO, or Flight Commanders. Consider other hard
inputs such as checkrides, MQT sorties, and upgrade sorties.

5. Ensure you have coordinated with training so as not to schedule something that needs a
prerequisite. This occasionally happens during MQT upgrade when someone had a non-
effective sortie.

6. Make sure you have the correct sim, RSO, RTO, and SOF periods posted.

7. If it is Monday or Wednesday, make sure you have scheduled 1400 Egress/Hanging Har-
ness training. If the Sq LSO is scheduled to track that day, make sure he is off the flying
schedule that afternoon. Also schedule Egress/Hanging Harness for all VIP/Eagle
Elites/Mx Appreciations at 1230.

8. Check the weekly meetings sheet and confirm the next day's meeting are posted. (e.g.,
1600 daily stand-up).

9. Check the ground training calendar to make sure that someone doesn't miss scheduled
chemical warfare training or .38 caliber pistol training.

10. After all known quantities are up, consider "pop ups". Do we have to schedule a static
display pilot? Do we have an aircew extraction? Have take-off times, ranges, or
configuration changed? Did we get "pop up" DACT? Did previously scheduled adver-
saries cancel?

11. Confirm who is on leave or TDY. Ensure this information is posted on die deconfliction
sheet. Also put all meetings, appointments and crew ret requirements an hs sheet. Now
you are ready to put names on the schedule. USE th deconfliction sheet. Keep it curn
Remember, unless you am quick tuning someone, you should allow 6 hous between their
initial brief time and their next event.

12. Post names for all the hard requirements first, (chckrides, MQT, upgrade sorties, or
TFS/DO directed priorities).

13. Post four ship flight leads; then element leads and wingmen in order. Use flight pairings to
the max extent possible.

B-5



14. Ensure the CC, DO, or ADO are in the squadron during flying operations.

15. Ensure both the CC and DO are not airborne at the same time.

16. If the Wing DO is flying with us make sure the CC is available to take his brick or arrange
for some other CC to take it.

17. Run the deconfliction checklist, make sure the deconfliction worksheets are correcL

18. Have your schedule approved by the DO or ADO prior to getting it the Ops clerks by 1200.

19. Make sure Mx gets a copy in time for the 1400 Mx Meeting.

20. Standby for flash floods.
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Deconfliction Checklist

-- All lines filled
-- Crew rest first and last go's

4-ship flight leads, 2-ship element leads
-- Aircrew turn times if applicable
-- Ops Sups deconflicted
-- SOF's deconflicted
-- SIM's deconflicted
-- Stand up covered

MTG's covered/deconflicted
-- Names deconflicted by Egress, H/H, CW Tng, ITC, etc.
-- Names deconflicted for appointments
-- Remarks reflect all the following where appropriate: DACT phone numbers, TUB,
FLUP, IPs, Mass Brief times/places, Area Restrictions, etc.
-- T/O times appropriate for area times.
-- VIP's covered - Egress, escort, etc.
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TPS GUIDE TO 51-50 REQUIREMENTS

JUL - DEC 1986

EVENT/SORTIE MR-EXP MR-XNEXP MS-EXP MS-INEXP CURRENCY (INEXP/EXP)

TOTAL A-47 A-53 30 30
B-59 B-70
C-83 C-96

GCC A-37 A-43 5/MONTH 5/MONTH
B-48 B-58
C-70 C-82

AIR/AIR A-33 A-39 90 DAYS
B-44 B-54
C-66 C-78

NIGdT A/A 4
NIGHT SORTIE 2 2

DART A-i A-i
B-GUAL B-QUAL 12 MONTHS
C-2 C-2 QUALIFY

CW FLT 1 1
INSTRUMENT 0 2 0 2
IP FLT 42 60 DAYS

CORP FORCE SATY A-0
3-1
C-2

RED FLAG 1/SIMON I/iSMON

EVENTS
CIT A-O50 A-60

B-70 5-84
C-90. C-119

SWEEP A-2
B-8
C-12

4-SHIP SWEEP A-2
3-4
C-6

POINT DEFENSE A-2
9-3
C-6

ESCORT A-2
3-4
C-6

CAP A-2
5-4
C-6

4-SHIP CAP A-2
s-4
C-6
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RiG CIrCPT A-4
(ABOVE 40K') -4

C-4
LOVAT nMCPT A-10
11ELO 1') 3-14 60/90 DAY CURRENCY

C-18

MC TRAINING
SC EVENT (RWR) A-4

!-4
C-8

ZC RANGE EVENT A-i
1-1
C-2

COEC JA A-i
s-2
C-3

DCCX INTCP A-i
5-2
C-4

INSTRUMENTS
PSMITU OM 6 6 6 6 uNZXP MAY DO
MPC APPR 12 i 12 is
NON-PREC APP 12 is 12 is WIN_
3U1 OFF 3 3 3 3 1 --T "-
PENETRATION

UD o" 6 9 6 9
PREC AlP
NUD O? 6 9 6 9
NON-PREC APP

SIMIZATORS 6 9 INST & 3P8 O EACHt
MON GRAMDED SI,

Six IP EP 14SN 1 1 EXCEPT SIX IP*

cm i I/HrALFt 2 1

AAR 3 3 2 2 6 Nom s
AAR-IGNT 1 1 1 I
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FORMATION TAKEOFF 60/90 DAYS
FORMATION LDG 60/90 DAYS
FLT LD WING TO 6 MONTHS
FLT LD WING LDG 6 MONTHS

NIGHT LNDG 2 2 2 2 15/30 DAYS"
IP BACK SEAT LDG 45 DAYS

* TAC GOALS ONLY
- IF A CW EXERCISE FLIGHT IS NOT ACCOMPLISHED, AN EXTRA SIN IS NEEDED.
$ MS AIRCREWS CLEARED TO FLY TACTICAL EVENTS WILL PRACTICE TACTICS IN
THE SIMULATOR

$$S AIRCREWS PARTICIPATING IN THE IC PROGRAM MUST ACCOMPLISH THESE
EVENTS

*A DAY OR NIGHT LANDING WILL UPDATE THIS CURRENCY
- FAILURE TO MAINTAIN CURRENCY WILL RESULT IN LOSS OF MR STATUS.
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I TPWi TRA1iNING ACTIVITIES RECORD
UK I S

SGS DC v DAY

SC27 ACT tber

S 12 -S-

S SC1 ACM 5 S-

SG1O ACTRne vn
SG2 DAC 24i
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T"W TIN1N1G ACTIVITIES WORD-
MR/N4S

NAME.

SSAi

r ul DAY 
1 V

PAOIS Precision
POSHUD-o rc o
0A4S Non- rec a on

PA0 AIfi:of -No- 
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LETTER OF X's

A. REFERENCES:

1. AFM 171-190 Volumes A through J
2. AFR 55-15

B. OBJECTIVE:

Provide procedures for maintaining each squadron's letter of X's. The letter of X's
will be used to document TFW pilots' qualifications as specified by the DCO to
include, training stus, weather category and

L
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,b Li-"- 860711 TFS LETTER OF X7 S

6A 
C A F 5

W C LL L 1 b
E X T A A F T M E F S R R

fi X C L N S U L I I F C 'U 0

NAME RNI" NU P I V G D G D P P.E F F ) 0 AVL REMAKI:'F L i 0i'

. . .. . .... . L I C I E A B M R X X 14 E X X X E

LIC . E A B MR X X 4E XX X DO

)MAJ 3 E A B MR X X 4E X* X X X X ADO

.MAJ i1 E A B MR X X 4E X* X X X X LVAV 097
CPTf 12 N B B Pik X A A
SCPT I , N D) ma

7 1.! 4 E* A Fi NPF x 2[" F. x: I, vD ;  I
, L;PT 15 N b A N. R T A
ILl 16 N C B FiR X XX

MAJ 21 E A B MR XX 4E X X XX FLCC
CFI 23 E F. 6 Pik X 4 F X x
CHT 24 N C A MR T x x
G i: 1 25 N D) m C-

t 1LT 27 N L B MR X 2E X X X
ILT 28 N C B MR X X X
LVI 29 N A B MR X X X

:MAJ 31 E A B MR X X 4L X T X X X FLCC
ILT 32 N C B MR X X X
CPI 33 E A B MR X 4 X X X
CFT 34 E A B MR X T T X x WL)VX

SCPT 36 E B B MR X X 4E X X X X TDAV 1509
CPT 37 E B B MR X 4E T X X X X
ILT 3, N C B MR X X X TDAV 1807
1LI' 39 N C B MR X X X

N'iAj 41 E A B MR X 4 1 X X X LVAV 0907
1LT 42 N C B MR X X X
CPT 43 N B B MR X T I X LVAV 1407
CPY 45 N B b MR X 4L X X
IL.T 47 E 8 9 MR X 4E X X X X X
OfT 46 N B B MR X 2E T X X
CPT 49 E A B MR X X 4E X X X X

COL 51 E C MS wGCV
MAJ 52 E A B MR X X 4E X X X X XX WDOW
CPT 53 E B ms X X 4E X X X X WDOT

:MAJ 54 E- A.- MS X 2E X X X WDOO
CPT 55 E A B MR X X 4[ X X X X WDOW
CPT 56 E A 9 MR X X 4E X X X X X WDOV
CPT 58 E B MS 4 rTSG
COL 90 E B MS WGCC

E =13 FL2E 5 IP * . SO" 5
NL =16 FL4E=v IP = "/ SEFE= 0

LIL. USAF I/MU= 2 FL/T 2 XE a 45
UPERAI(JNES OFFILER IP/T= 1

NuiE: AUOVL FIGURES A i. FUk KaVi-1 PILOi5 UNiLY!1,

0-3 4



APPENDIX E

Schwdullng Shell

E-1



:Hai

!1JI ,w.''

E-

I ~ I ,,,,

! :I :i i' - !

I' !iii i111U-

I I II I ' ; f



* I

j IIIIII I I 1111 II
• I """.

,ns'ii l

I.ii iiiiiiiiiii

I Ia I I I I I*I . 1.. I'.. . ...l ,



z bbI-

b- a

b ic| I -II I I A ,H. "- 1" .1I I I
on Mli i l l IllI lII i !

!I I o *,
I J

,I I I , wo VI I9.

*b f

I I I! °i I ! ° I l o l I I0 I oI I _

M4 %0 M Ii '"0 I , "0T 
T

I! 

.-- I -

I ,I II - *i

2 1 ' 6" or N•~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~k ,, " ' ' .... ..!. . ... .. . .. I.. "' "" .. .. . .. .. .. .. .I - "-- ----

E-.4



APPENDIX F

PAS Code

F-i



Notes on the Pilot Assignment (PAS) Code

The PAS code given here is for the basic daily scheduling problem. This particular version

of the code is designed to be used with pruned data. In this case pruned means that only pilot

qualifications for jobs which are to be assigned are stored. In addition those arcs which are

infeasible due to pilot nonavailability have also been removed. This can easily be done the prior

evening once the previous days flying is complete.

Input consist of the job data and the applicable (pruned) pilot qualifications. The user also

specifies the print level as well as whether the job categorizing specified in the text is to be used.

PAS will then return a feasible schedule if found. If not and catting was not selected, the program

starts over and the user specifies catting (unless the infeasible solution presented was acceptable).

Once a feasible solution is found , or an infeasible solution if catting is selected, the user is then

asked whether a higher objective valued solution is desired. If so improved solutions are pursued

until a single pass through all of the jobs can produce no more improvements.

The code presented here is a developmental one. One could make reductions in memory

requirements as outlined in Chapter 3. Execution times can in all likelihood also be reduced

significantly through some of the prcedures suggested also in Chapter 3. Hopefully future

research and interest by the Air Force will lead to such a code.
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finclude "timer.h"
#include "ma:ro.h"

/.......*..t...t... tt...... .t..ttttt.t tttt

PILOT ASSIGNMENT ALGORITHM (PAS)

MARK T. MATTHEKWS

22 JAN 1987

/*************** DECLARE GLOBAL VARIABLES ***********************

/* The Node Vector */

int depth(N!;; /* depth of a node in the tree *I

int predINNI: /* pred of a node in a tree */

nt up(NN); 1° orientation of the pred arc of a node '/

int predlilZ;j; /* the prod arc of a nod* */

nt threadin?]; /* the thread of a node */

int dual[N%]; /* dual price of a node *I

int point(NN; /* pointer to the first are of a pilot */

iAnt source(NN; /* supply or demand level of a node */

/' The Arc Vector */

int Cost(NA,: /* cost ( price ) of an arc */

nt bnode(NA). /I the to node of an arc */

nt flov(NA]; /* flow over a arc */

/* General variables */

mnt n-0; /*marker for the from node 1

nt st-O; /*market for the to node */

int fromw0; /*marker for the from node */

Ant to-O; /* marker for the to node */

nt jobleft-0; It indicates whether jobs are left between tranep. prob. *
.

Int pivotcount-O; /* marks whether any pivot* have occured */

Ant pivot-O; /* marks whether any arcs haved priced favorably '1
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int ftnin-0; I* min flow for a ratio test *

int linkin-C; /* the entering link/

int M-10000; /* the Big M value *I

int tt-O; I' counts the number of transp prob solved '

int q-0; /* The number of jobs (including sink /

int level-0; /* print level ./

mnt maxl-O; /* the max number of links ( real links )'

int N-0; I' number of pilots plus bogus *I

mnt imp-0; /* marker indicating whether an improved solution was found

ir.: nogo-0; /* indicates that no feasible arcs remain for a job 0

mnt last-0: I' general marker */

mnt bogus_label(NJJ: /* indicates whether that job is labeled to bogus '

int feaslinks [NJ]; /* indicates a feasible link to a given job 0/

mnt i-0; /* tracks pilot number */

ir.: gold[NP); I' indicates number of last job assigned/

mnt j-cat; /* number of job cats designated in the input file *

mnt cat; I' the actual cat number being priced in the algozithe *

mnt bflow[NA]; /* a backup tracker of arc flow */

mnt timeperiods-O: I' the nuber of timesperiods in a day '

mnt ttime-O; /* the number of times a transp problem has been solved 0

mnt infeas-O: I' indicates no feasiblie solution found *I

init price-count; /* counts the number of pricing operations '

mnt pivot-count; /0 counts the number of pivots 0

mnt svapcount: /* counts the number of swaps 0/

mnt imp count: I' counts the number of improvement swaps made 0

/* double variables */

double endjob-O.Oa I' indicates when the the last job ends 0

double jobstart-10000.O; /* indicates when the first job starts 0

double fillindex[NJI: /0 the fillindex of a given job 0/

double crewrest-0.O: / the length of the crewrest period/
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/* structs ( see "macro.h" ) */

jv job[NJ]; /' struct for each job /

,v *jobponter[NPj: /* pointer to each pilot assigned job struct '/

Iv pilot(NP]; /* struct for each pilot */

HP heap[NJI; /* struct for each job in the heap */

HP *hp; / pointer to each job heap struct /

/ *o**.**t*****, BODY OF PROGRAM " MAIN " *0**0°..* 00***** 0/

main 0

.......... DECLARE LOCAL MAIN VARIABLES ********.0***/

/* general utility variables */
int na, nnoldcwork,bpriceold,aabbccktotCost-Ocan..do;

mnt cont,catstat-COctip-O,ujdate(4]:

int found-label; /- indicates a job is labeled to "bogus" */

/* structs/iv nem:

/0 time tracker variables /

double datain time, source-time, inittime, price-time, pre awap time:

double pivot time, assign_time, changetime. awap time, infeastims:

double heaptine, imiprtime, tot-time, stop:

/.,*0000*0.*0,.00*00 InAitialiAing *00***0000***t***---*00/

/* Set the number of timeperiode in a day /
startover: timeperiods - 100;

preavsep-time - 0.0;

/* Set the length of the crewrest periods '1
crewest - .0050:

/* Inpvt the data I
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get time (grstart);

data-in ();

get time Cirstop);
cpu time - show time(&rstart,&rstop);
data-in-time 4- cpu time.usr;

/Initialize the total cost ~
toteost - (q*M) + 1;

/* If "catting" not selected look at all jobs else look at jobs by cat '
if ( infeas 0- 0

cat start - icat;
else

cat-start -1:

for (cat-cat start; cat <- J~cat: ++ cat

±-0;

/* update arc prices based on previous job assignments '
if ( cat !- 1
change cost 0

/. update job deamands based on previous job asignments *

repeat: get time(&rstart);
cpu times9tart - show time (&rstart, aratop):

jobsouree ();

get time (Srstop):
cpUtime-stop - show time(&rstart,&rstop):
source-time *- (CPU time stopusr - CPU time startusz);
tot-time +- cpu-timekstop.usr - Cputia sstrit.usr:

I' initialize using the Big N method
gettime(srstart):
cpu time _start - show _time (6rstart. Srstop):

initialize 0

got timew(rstop);
cpu time stop - show time (Irstart, Srstop):
init-tims (CP cptime stop.usr - CpU-time start.usr)*
tot-time 4-cpu timesitopuar - eputimn-start.usr:

****~~~ Pricing and Pivoting *.*ee*~.******

± - 0:

while ( i<- 9
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/* Price each eligible arc ~
get -time (&rstart);
cpu time start - show time(&rstart,&rstop);

pr ce ():;

get time(&rstop);
cpu -time_stop - show time (&rstart,&rstop);
price time - (cpu time stop.usr - cpu time stort.usr);
tot-time +- cpu time stop.usr - cputime-sart.usr;

I' If an arc prices favorably pivot it in '
if ( pivot < 0

get -time (frstart):
cpu time start - show-time(grstart,&rstop);

pivot-out ();

get time (srstop);
cpu -time-stop - show-time (&rstart. £rstop);
pivot-time +- (cpu time stopusr - cpu time start .usr);
tot-time +- cpu _timne stop.usr - cpu t~me start.Usr:

/if an arc priced favorably go through the arcs again o
if( -- 1: && pivotcount --1

i - 0:
pivot count - 0;

1* assign pilots jobs based on the results of the simplex algorithm .
get time(grstart),
cpu time start - show tizne(Lrstart, &rstop);

assign ():

get-time Carstop);
cpu time stop, - show time (&rstarttirstop):
assign time *- (eputime stop usr - cpu time start.usr):
tot time +- cpu-timsstOp.us; - cputiis start .usr:

I* if there are any jobs left do the following '
if ( jobleft 1

can-do - 0;

/* update arc prices based on job assigments '
repeat2: get time (arstart);
cpu-time-start - show time (&rstart, arstop):

change cost U
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aet-tine(&rstop);
Cpu time stop - show time (&rstart,&xstop);
change-time - (cpu t 'ime-stop.usr - cpu time-startuar);
tot-time 4'- cp~u time stcp.usr - cpu time start.usr;

/I See if any feasible links exist to unassigned jobs '
while ( job...pointrtN->number !- 0)

if C feaslinksljobpointer[N]->numberI -- 1
can-do - 1;

jobpointer[N] - jobpointer [N] -next:

o!: inter[N] - &pilot[N].assigned[l];

/ ~~~~~ ~Swapping *****4*************/

/* If no feasible links exist try to swap out the job *
if ( car. dc -- 0

get -time (&r start);
cpu time start -show time (grstart, Irstop);

if (swap-count 0 )
pre swap_ time -pricestime;

swap (N);

get time (&rstoip);
cpu-time stop - show-time(firstart. Irstop):
swapt irma cpu ~time stop.usr -Cpu_time start.usr:
tot-time 4-cpu time stepuar -Cputimeisartuar:

if C nogo 1- 1
goto repeat2;

1' otherwise start over with the reduced transportation problem *
else if ( can-do - 1 11 ( nogo I- I A& cin-do - 0

zero~pilotvector (N);
goto repeat;
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printf ("In~itial sln usr time is *6.2f \n", tot-time);

/* make the final initial solution assignments*'
get time(&rstart);
cpu time start - show time (&rstart, £rstop);

assign (N);

get-time(&irstop);
cpu time stop - show-time(&rstort,&rstop);
assign time +- CPU-time stop.usr - CPU time start.usr;
tot-time - cpUt ime stop.usr - cputii._start.usr;

/* find the jobs labeled to bogus i
get time (&rstart);
cpu-time start -show time (&rstart, &rstop);

jobjpointer (N] - pilot [N] .assignedl:

for Ui1; i<-q; ++i)
if (bogus labelli] - 1)

found-label - 0;
while (jobpointerjN1->number 1- 0)

if (Job .pointer IN] -nuez - i)

jobpointer(N] - pilot (N] .assign~dlqoldzE] I.next:
found-label - 1:

else if (Job~pointer[NI->next- nmber - 0 && found-label -0)

n in - Jobli]:
nin.number - i
add(N,n in);
Jobpointer [N] pilot (NI .assignted~gold(N]I .next:

else
Jobjeointer IN] -job..point~r (N] -next:

jobpointer (N] - gpilot (N] .assignedtlI:

Job..pointor[N3 - Apilot (NJ.assigned[l]i

I. If any jobs are labeled to bogus print who is qualified to do it '
while (jobpointer(N]->nuMbor 1- 0)

u- 4ob-pointer[N]->number;
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printf ("\nl")
printf ("Infeasible soin found"):
printf ("\n");

if ( level -- 10 11 level -- 7

printf ("Unable to assign job %d\n", job~yointer[N]->number);
Prirntf ("The following pilots can perform this job\r.");
prinif ("Pilct# Job# Start Stop\n\n");
for (i-1; i<N; ++i)

for (aa-1; aa<-pilotfi].next: ++aa)
if (pilot~i].typelaa] -- job[uj].type)

while Cjobpointerl->number !- 0)

printf ("%3d%10d". i, job pointer [i] ->nurnber);
for (k-:; k<-3; ++k)
date (ki-convert (job~pointer Ci] ->start, k);

flug: if(date[3] <100)
printf (" 0O%2d",date[3]);

else if (date[3J < 1000 && date[3]>- 100
printf C" 0%3d",date[3]);

else
printf ( %4d,date[3]);

if (trip 1- )

stop -jobpointer[i]->length + jobpointerj->start;
for Mk-2; k<-3; ++k)

datelk]-convert (stop, k):
trip - 1;
goto f lug;

else

trip - 0;
printf("\n");

jobpointer Ci] - jobpointer [i]->next;

jobpointer[i] - &pilott[±1.assiqnedll:

jobjpointer EN] - jobpointer (N]->next:

job pcirnter!N] - &pilotjN] .assignedfl]; 1

1' If we're infeasible and "catting" not selected, exit so user can start over
wit!h "cattina "4
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i f Cjob_pciJnterlN]->nunber I-0 infeas 0- )

printf ("Start over\n\n");
exit (9);

get time C&rstop);
cpu -time-stop - show-time (4rstart, £rstop);
±n~feas-time +- cpu time stop.usr - cpu _time start.usr;
tot time +- cpu _timestop.usr - Cpu_time_start.usr;

/ ** ~ ~ ~ ~ ~ Improving ****************/

doit: get -tirme(&rstart);
cpu time start - show-time(&rstart,grstop);

/* order jobs in ascending order based on arc prices *

heapICJ arc - 0;
bnodeCOJ - N;

heap[0J.next - heap[NJ-l];
heap[NJ-lJ.arc - NA-i;
bnode[NA-1] - 0;
heap(NJ-l].cost - -M-1;
heapLNJ-i].next - &heap(0J:

for (aa-i; aa<-N; 4+aa)
for (k-point(aal: k<-pointlaa+l]-l; ++k)

old -NJ-i;
hp - hoap[0J;
if (bflowlkJ > 0 && bnode(k]-N I- q)

heap[bnodeik]-NI.arc - k;
for (cc-i: cc<-pilot [eal .next; ++cc)
if (pilot (aaj .type~cc]-jobibnodelk]-N] .type)

heap~bnade~k]-NJ .cost - pilot [aa] .cost(ccj;
heap[bnode(kJ-NJ.pilot - &a;
while (heaplbnodelk]-NJ .cost(-hp->cost

heap Ibnode [kJ-NJ .next - hp->next;
heap~bnod. Chp->arc] -NJ.next - &beap [bnode [kJ -NJ;
heapfoldJ .next - &heap~bnode~hp->arc]-NJ:
old -bnode[hp->arc]-N;
hp -heaplbnodoik]-N].next;

F- 10



/* compute total present cost ~
hp - heap[Ol.next;
oldc - totcost;
totcost - 0:
Vhile ( hp->arc !- NA -1)

bprice - hp->cost;
work - bnodechp->arc] -N;
if ( level -= 10)
printf ("%5d %5d\n",work,bprice);

totcost +- bprice;
hp - hp->next;

get time(&rstop);
cpu time stop - show-time(&rstart,&rstop);
heap time +-Cpu_time_stop.usr - cpu time start.usr;
tot-time 4=cpu,-time_stop.usr - cpuk_time_start.usr;

printf ("Total cost is td\n",totcost);

printf("Do you want to get an improved solution?(yes -)nn)

scanf ("%d,, &cont);

if ( cant -- 0
exit (8);

/* if totalcost has improved try to find another improvement *
if Ctotcost < oldc)

hp - heap[D] .next;
while (hp->arc 1- NA-i)

aa - bnodelhp->arcj-N;
bb - hp->pilot;
cs - hp->coat;

get time (&rstart);
cpu..time-start - show time(&rstart,gratop);

impr (aa,bb, cs);

get time Cirstop):
cpu time stop - show time C&rstart,&rstop);
impr time -cpu-tiffWStop.uSr - cpu tima-start.usr;
tot-time *-cpu _time stop.usr - cputimeatart.usr;

hp -hp->next;

if (imp --1)

get time(&rstart);
cpu time-start - show time(&rstart,arstop);
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assign 0

get time(&rstop);
cF1u time stop - show time(firstart,firstop);
impr_time +-cpu time stop.usr - Cpu-time-start .usr;
tcz_t-4,e +-cp- tim-e stop.usr - cpu-time-start.usr;

irmp - 0;

printf ("Tot time to this impr is %6.2f \n", tot timel;

goto doit;

/ ** ******* ~ ~~****Data printout *******t*********

1* comr-ze and print the problem stats *
printf ("\n\n");
Fr-.:tf (::: .sr time is %6.2f \n',tot-time);

nn - N4 +q +1;
na - point fN+11-1:
printf(' d Nodes %d Arcs\n", nn, na):
printf("Price count is td\n*, price count):
printf ("Pivot-count is Wdn", pivot count);
printf ("Swap cTount Is Wdn", swap count);
printf ("Imp-sount is td\n\n\n", impcount):

printf("Input time is %6.2f\n",data in time);
printf("Source time is %6.2f\n",source~time):
printf("Init time is %6.2f\n",init time):

if (swap-count 1- 0)
price-time -- pre swap time:

else

pro swap_ time - price-time:
price time - 0.0;

printf ("Price time is %6.2f (preevap) and %6.2f (postswap)\n",preswaptime,
price time);

printf ("Pivot time is %6.2f\n",pivot-time):
printf ("Assign time is %6.2f\n",aSsign time);
printf ("Change time is %6.2f\n ,hange time):
printf("'Swap time is %6.2f\n",swap time);
printf("Infeas time is %6.2f\n",iiFeasstime);
printf ("Heap time is %6.2f\n",heap time):
printf("Improve time is %6.2f\n",ispr _time):

/.********.*****Last Card of the Main program ***~~**~~
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#define ? 51 /* number of pilots '/
#define NJ 51 /* number of jobs '/
*define NA 1001 /* number of arcs 'I
#define NQ 21 /* numer of quals per pilot 'I
#define ND 11 /* max number of duties assigned a pilot */
#define NN 101 /* total number of nodes */
#define MJ7 1001 /* the highest number used for a given job type .'

/* define the job struct /I
typedef struct jobvector {

int cat; /* the job category */
int type; /* the job type */
int number; /* the number (demand) of a job '/
int label; /* marker indicating whether the job has been labeled '/
int con[NJ]: /* the conflicting jobs '/
d:ube start; /* job start time */
double length; /* the length of a job '/
struct jobvector *next; /* pointer to next job */

),7V,

/* define the ;±ict struct */
typedef struct {

int type[NQ]: /* the job types a pilot is qualified to perform 0/
int cost[NO]: /* a pilot's price to do a job */
int swapout[ND]; /* tracks jobs a pilot must swap to take another job '/
JV assigned[ND]; /* the jobs assigned to a pilot '/

)PV;

/* define the struct for the heap 'I
typedef struct heaper (

int arc; /* the arc of an assigned job /
int cost; /* the above assigned arc cost */
mnt pilot; /* the pilot a job is assigned to */
struct heaper *next; /* pointer to the next job in the heap '/

)HP;
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#include <sys/time.h>
Oinciude <sys/resource.h>

typelef struct i I' for accumu:lation user and systemr time '
doubl~e usr, Sys;

get tirne( rval
siruct rusage *rval;

getrusageC RUSAGESELF, rval )

CFP TIME show time( to, ti
sTruct rusage -ti, 'to,

CPUTJ-,M t;

t.usr -(double) (tl->ru-utiMe.tV-Usec - tO->ru-utime.tv-usec);
t.usr /1000000:
t.usr ~-(double) Ctl->ruUtime-tv-sec - tO->ru utiite.tv_5cc);

t.sys -(dcuble) (t1->ru-stime.tv-usec - tO->ru-stime.tv-usec);
t-sys /1000000;
t.sys (dou1ble) (t1->ru stifne.tv sec - tO->ru itime .tv-sec);
return( t )
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#incl~ude <sYs!time.h>
Oin:.- e <sys/resou~rce.h>

typedef struct I /* for accumulation user and system time
double usr. Sys;
CPUTIME;

int get -timeo; /* has one argument of type struct rusage *
C"~~f- shw-tiffeo; P* two argirnents, returns cpu time '

static struCt rusage ratop, retart:
static CPUTIME cpu time, cpu time start, Cpu time stop;
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i.-nclude <stdio.h>
*include "macro.h"

........ ***** BODY OF DATA IN PROGAZM *********** *********.,*/

/T:is rctine takes two input files. The first file is the jct file such as
the following example:

1 110 1.126292e+01 2.083333e-03 I
1 120 1.126292e+01 2.083333e-03 1

1 130 1.126292e+01 2.083333e-03 1

1 140 l.126417e+0l 4.166667e-04 1
2 210 1.126250e+0l 2.500000e-03 1
3 310 1.126250e+01 2.5000OOe-03 1
4 410 1.126250e+01 2.500000e-03 1
4 410 1.126333e+01 2.500000e-03 1
4 420 1.126333e+0l 2.500000e-03 1
5 5ic 1.126250e+0l 2.500000e-:3 1
5 510 1.126333e+01 2.500000e-03 1

The first column is the category number, the second the job type, the third
is job start time, the fourth job length, and the fifth is the number of jobs
of this type occuring at this time. The first two digits of job start time
represent the month, the second two the day, the rest of the digits are the
time cf day where 1.000000e-02 is 24 hours.

Tt- se:cnd file is the pilot qualification file such as the following:

1 110 -27
1 120 -56
1 130 -57
1 140 -83
1 410 -4
1 420 -57
1 510 -36
1 610 -99
2 110 -62
2 120 -42
2 130 -22
2 140 -96
2 310 -63
2 410 -14
2 420 -54
2 510 -11
2 610 -20

The first column is the pilot number, the second is the job type and the third
is the benefit of that pilot performing that job type. This file has already in
fact been synthesised to account for pilot nonavailability and to sequentially
number the pilots for input (in a separate routine not shown here ).

These files combine to form a third data listing which contains the anode,bnode,
and cost (price) for each arc.

/'**** Declare Global Variables *

extern in Jacat,feaslinksl],M, level,q,maxl;

extern int infeas,N,point([,source(I,costi,bnode[];
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extern double crewrest, jobstart ,end job, fillindex [3;

extern JV jobj,*jobjpointerL];

extern PV pilot(];

/*~~***~* Declare Local Data-in Variables .. e.*....*@ /

ittotjcb-C: /- the total number of jobs '

in. anode [3D /. the fromt node */

double sumjob[MJT]; /* the total number of a particular jobtype

double pqnuniber(143T]; I" the number of pilots qualified to perform a jobtype '

in't aa,bb,i.j,k,x,eofflag-S; /* utility variables *

/,Char variables use to read in file names*/

char in-namel[25j,inname2[25j:

r:7 *i%-filel, *ir file2, *fopeno;

I' initialize variable. *l
anode[l]-O; anodeC2]-O; anode[31-0;

i 0;

/* initialize jobypointers '
f or ( aa-0; aa<-NP-l; ++aa

jobpointer(aa] - Spilot [as].assiqniedfl]:
for ( Lb-"; bb<ND-l; ++bb)

pilot [as].asaignedlbb] .nezt - Gpilotlaa] .assigned(bb+lJ:

/*****************Opening the Files * * * * * * ***/

printf ("Enter the name of the job file:\n\n"):
acanf ("%24s", in-namel):

printf ("Enter the name of the pilot file:\n\n"):
scanf ("%24s". in nam*2):
printf ("n\n"):

printf ("Do you want to cat infeas? (0 no, I yes) :\n\n");
scanf ("%d", &infeas):
printf ("n\n"):
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Printf ("The following print levels are available:\r."):
F r; n 2. Data read in files .r\r");

printf (" S. Pricing\n\n");
Printt C 6. Pivot\n\n");
printf C" 7. Asaign\n\r.");
printf ("En~ter the print level\n\n");
scanf ("%.d", &level);
printf("\nn");

in -file! - fopen (in naznel, "r"
in. file2 - fopen (in name2, "r" )

if Cin-fulel -- NULL

printf ( "couldn't open %s for reading.\n", in-namel):
exit (2);

if Cin-file2 -- NULL

printf C "couldn't open ts for reading.\n", in-name2);
exit (2);

jobstart - M4;

endjob - 0;

k - 1;

Jcat - 0:

if (level- 2

printf ("The job file is:\n\n");

/* Read in the job file data "
while ( *of-flag !- ZOF

eof-flag - facanf( in-filel,"%d", LiJobjk2.cat);

if ( Jicat < jobtkj.cat)

Jicat -job[kJ.cat:

facanf Cinjfilel,"5d~l~e~l5e%5d", Gjoblkj .type, GjoblkI start,
Ajobjkl .lenqth, Gjob~kJ .number);

if (job~kI.Start < jobatart 66 job~k].start 1- 0)
jobatart - jobikJ.atart;

if (joblk.start + joblk].length > endjob
endjob - joblkl.start +. joblk].length:

if ( eof-flag !- OF

if ( level -- 2
printf ("I5dI~dtlSetl~eI~d\n", job I] .cat, jobik] .type, jebikI start,

jobjki .lenqth,jobfkj .number);
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sum jobljoblk].typej jobik] .number;
tcot job +- joblkJ.number;

i * Set the sink job type '
jobjk-l].type - 999;

q -k-1;

if Clevel -- 2)

printf("%5d%5d%l5.%15e%5G\n\n",Jobrq3.cat,joblq) .type~joblq] start,
job (q].lenqth, jobjq3 .nwrtber);

printf ("The first job starts at %e\n\n",Jobstart);
printf ("The last job ends at %e\n\n",endjob);

k-1: J-:; i-1;

1establish the job interference sets *
while (jobij].eat 1- 0

it I eve1--2)

printf (\n\n");
printf ("For job Od interference is:\n",J):

while (jotklk.cat !- 0

if ((jbljI.start + jobljJ.lenqth > joblkl.start AS
Job~j].start < Jobjk].start + job[k].lonqth

(jeb(jJ.start + crevrest < job~kI.Start + jobtkl.lenqth)

(jobIJl.Start + jobtfl.length :I jobjkJ.start + crewrest )

jobij].eontil - k
if (level-2)
printf C"%3d%3d%3d\n",J,i,joblj] .conli]):
i +- 1;
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k-1; i-1;

eof_flag - 3;

R Tead in the pilot qualification data '
while ( ecf-flag !- EOF

eo-f flac - fscanf (in file2,"%5d'1 &anode[2]);
fscanf ( in-file2,"%5d%5d", &pilotianode[2J).type[k],

&pilot[anodet2).cost!kJ);

if (o -otflag !- EOF)
;. a Fdei223j tye[k] +-1;

if (anode[2] > anodefi]

pilot(anode[21].type(l] - pilotlanode[2]].typelk);
pilctianode[2fl.costfl] - pilottanode[211.cost(kJ;
pilot(anodollj).n~xt - k;:
pilotianodell]].typelk] - job[q] .type:
pilottanod*11I.cost~k) - 0;
scurcelanode(2]] - 1;
anode~l] - anode[2];
N 4-1;
kc 1;

kc4-1

pilot [anode [21].type(k-lI - jobiq] .type;
pilottanode[2]].costlk-13 - 0;
pilottanode(2]].next - k-1;
if ( level -2)
printf ("The fillindexes are:\n\n"):
x- 1;

1* Compute the fillindexes for each job 0

for (k-1; k<-q; *+k

if Ijob~kl.type I- joblk-1J.type

pilot [anode [21+1] .type(xl - jobikI .type;
pilotjanode[2]4l].Co~tjx1 - M4;
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if ( k--q
pilot [anode[2]+l] .cost[xJ 0;

x +- 1;

i.f (sumjobljob[Ic].type] !- 0

fillirndextk] pqnumnberljobtk].typeJ/surnjobijoblk].type):

if (level -- 2
prinif ("job %d ... %e\n",Ic,fillindexlk]);

pilotlanode[2]4l].next - x-1;

N +- 1;

/Set the supply level for bogus ~
scurcert; ql -N:
if (level -- 2

rrint! ( \n\n" )
S("The pilot file is:\n\n");

for ( i-1; 1<-N; +1i
fcr (kc - 1; kc <- pilot[i.n'ext; ++kc

eof flag - 3; anodell - 0: anode[21 - 0: 1 - 0:

x-0;

I" Determine the anode, bnode, and arc price data *
for ( J-1; i<-N; +i

poini~i] - x+i:
for ( Ic-1; k<-pilot(13.next: +4Ik
while ( jobtfl.type <- pilotti].type(c3 66 j <- q)

if ( jobjj.typ* - pilatliI.typelk]

x +- 1;
costtIl) - pilottil.cot(cI:

bndex] - N+J: IL
feaslinkcsibnode(x]-N] - 1;

j -1
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maxl x; point[N+l] - maxi + 1:

if (level--2)

printf ("\n\n");

for (i-i: i<-N; ++i)

printf ("Pilot's %d arcs are:\n\n",i);
for (k-point(i): k<..pointli+l]-l; ++k)
printf C"1%5d%5d%10d\n",k,bnode[kJ,cost~kJ);

printf ("n\n");
printf C"There are %d job-times (including nothing job)\n",q);
print! C There are %d total real jobs\n",totjob);
printf ("There are %d total pilots (including bogus) \n\n",N I

fclose (in fulel):
f close (in Z ±102):

/***~***~~*****Last card of Data-in **************I
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Oinclude "racro.h"

/***************** Body of Program Jobsource *********************

Jicsource updates the demand level of jobs based on current job assignments

jobszurce ()

/ * ********** * Declare global variables **************************

extern int infeas,cat,point],bnodel],flow[],sourceE],jobleft,q,N;

extern JV job[];

/******** Declare local variables **** *

int i;

/* Set the source values for each job */
if (jobleft -- 0)
for ( i-1: i<q: ++i )

if (job[i].cat -- cat Ii cat -- 0 II infeas -- 0)

source[N+i] - -Jobri].number;
szurce[N] +- job[i].number;

else

sourceIN+i] - 0;

/* Between transportation problems update job demand levels based on pre
vious job assignments */
if (Jobleft --l

jobleft - 0;
sourceIN] - 0
i - point[N];

while ( bnodeti] < N+q )

if ( jobcbnodeli]-N].cat <- cat II cat -- 0 II infeas -- 0)

source[bnode~i]] - -flowli];
source[N] +- flowfi];
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flowli] - 0;

i - 1;

*.******************* Last card of jobsource ************************
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#include "macro.h"

/***************~~ Body of the Change_cost Program ********************

Change cost updates the arc prices based on current job assignments

changecost ()

I***************** Declare Global Variables ******************************/

extern int ttime,q,feaslinks[],level,N,M,point[],bnodel),costl];

extern JV job[],*jobpointer[];

extern PV pilot[];

/*************** Declare Local Changecost Variables ************** */

int i,J-0,x,k,z;

/* Count the number of the transporattion problem being solved */
ttime +-I;

for (i-1; i<N; ++i)

if (level--8)
printf("For pilot %d\n",i);

/* Look at each job assigned to a pilot */
while ( jobpointeri]->number !- 0

if I level--S
printf ("Job %d\n",Job-pointer[i]->nuber)

x - point(i];
k-1,

/* Look at each job that an assigned job intereferes with and change the arc.
Change the arc price on interefering ( infeasible J arcs. */

while ( job[jobpointeri]->number].Con(k] !- 0
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z- job(jobpointri->numiberj.confk] + N;
if ( level--B)
printf("this job int. with node~d\n\n",z);

while ( x<-pointli+l]-l £~bnode~x] <- z

if ( bnodelxJ -- z
cost [x] - ttime+M;

else if (cost Cx] !- ttiMe+M)
I

for(J-l; J<=pilotli].next; ++J)
if(pilotlij .type~jj -- job~z-N] .type)

costixJ - pilot~i].costij];
break:

if (level--S)
printf ("bnode~x] %d, z is %d, and cost~xj is %d\n\n",

bnode (x , z,cost Cx]);
X ~ 1;

jobypointer Ci] - jobpointer [i]->next:

jobpointer Ci] - &pilot Ci] .assignedll];

for ( i-1; i<-q; ++i
feaslinks[i] - 0;

/* Determine if any feasible links exist to a particular job *
for Ui-1; ipoint[NI: *+i)

if (cost Ii] < M4 && bnod.Ci] !- N+q)

feaslinks[bnode~il-N) - 1:
if (level--B)

I

x - bnodeki) -N;
printf ("Feaslink for %d exists with link td\n\n*,x,i);

if Clevel -
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for ( i-1; i<-%'; ++i)
for C x-poiritli]; x<-point[±+l] -1; ++x

printf ("%3d%4d%7d\rn",i,bnodetx],cost[x] ~

/.**.~*~~.***Last card of Change-cost ***********
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/''°*°'''''*' Body of the Initialize Program * *.t t..*'/

/ttet.*....**..**tttt**ttt*****t~tti***,***a*tt**ttt****t***

This routine creates an initial solution using the Big M method

initialize ()

/***''********* * Declare Global Variables *********************/

extern int level,q,maxl,fmin,tt,M,N;

extern int source[],point[],dual(],pred[],predl[];

extern int up[],thread[],depth[],cost[],flow[];

/************** Declare Local Variables ***********************/

int k,i;

printf ("Initializing\n"):

tt - N + q + 1;
point ttl - maxl + 1;
point(tt+l] - maxl + N + q + 1;

/* This is part of the cat mod *I
for(k-1; k<-point[tt+l]; ++k)

flow[k] - 0;

ASSIGNING INITIAL VALUES *

/* Assign the initial flows (find an initial basis ) using the big M

method. Construct the initial tree with this basis. "1

fmin - M;
depth(tt] - 0: preditti - 0; predl(tt] - 0; dual[tt] - 0; thread(tt) 1:

for (i-1; i<-N+q; ++i

thread[i] - i+l;
pred[i] - tt;
predlli] - maxl + i;
depth(i) - 1;
if ( sourcefi] > 0
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UP~i] - 1:
dualj - -M-1;
flow(maxl+i] - sourcelji)

else

duai[i) - M+l;
flow~tmaxi+i) - -sourceli];

cost fmraxl+i] - Ml

if ( level--4)

kc -0,
printf ("Pilot %d arcs are:\n\n",tt);
for (±-pointitt]: J<-point~tt+i] -1; ++1)

kc +-I;
prltf ('i5d%5d%5d%10d\fl\f",i,k,flowti],cost(i]I;

printf ("Node Source Depth Thread Prod Predi Up Duai\n\n");

fox li-1; i<-tt; ++i

prirntf ("%3d%6d%7d%7d%6d%5d%5d%8d\n",

i,sourceti1,depthliJ,threadii,predli]Dpredl[iIup[±],dual[i]);

/"'~~'~~~ Last Card of Initialize ******~******/
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/**.~************** Body of Price Program ************.**4*****

Price looks for entering arcs using the row most negative rule

price ()

/* '******** ******* Declare Global Variables ***********************

extern int i, point[],dual[],cost[],bnode[blinkin,from,to;

extern int N,M,pricecount,pivot,pivotcount,level;

/**4*************** Declare Local Variables ***************************/

int cbar; /* the reduced cost of an arc */

nt 1; /* the actual arc number */

/ *******************4******Q******4**4QQ~********Q********4

* PRICING *

~i 4- 1:

pivot " 0;

/* Look for the most negative reduced cost on a link out of node i. This

will be the link that we will pivot in. ( Row most negative rule ).

If we have no negative reduced cost we are optimal. 0/

for (1 - point(i]; i<- point(i+l] -1; ++1
if C cost l] < M i1 i -- N)

price Count +- 1;

cbar - dual[i] + cost[I] - dualIbnodell]];
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if ( cbar < pivot

pivotcount - 1;
pivot - cbar;
linkin - 1:
from - i;
to - bnode(1];

if C level -- 5
printf("Cbar is %d and linkin is %d\n", cbar, linkin);

/******.4. ******* Last Card of Price t******************* 4*****
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/.*.************ Body of Pivotout Program ... **.***** ***./

........ **.. tt..*.e* *.t*..*t.*..t* .......

Pivct out finds the leaving arc using a standard ratio test and then updates
the basis by rehanging the tree

*..... ..et*.*..a.****e .*...ss~e.e....e...**...s.e.ee**o*ee'sa-/

Pivotout{C)

**** * * Declare Global Variables * **

exterr. int tt,n,m,from,to,source[],depth[],pred[],up] ,flow[],predl[];

extern int pivot count,N,level,fmin,linkin,thread[].dual[],cost[],bnode].M:

**************** * Declare Local Variables ***************************/

Jnt A,/,*,,E,F,last,ll2,z; I' utility variables */

int nrnin; /* the node whose predecessor arc is the arc to leave the basis */

int cut; /* indicates whether cut is on the up or down side */

int jnode: /* the joining node of a cycle formed by the entering arc /

tin linkout; /* the leaving arc */

int oldepth,chdepth,chdual; /* respectively the old depth of a node, the change

* PIVOTING 0
C C

/* Find the link to leave the basis. The link that will leave will be

either an "up" link on the down side (side of the from node of the

entering link) of the tree or a "down" link on the upside (side of

the to node of the entering link) of the tree. The particular choice

of which link to leave is decided by the link which is the closest

t: its lower bound (0). In other words we are doing a ratio test.

The entering link must enter with flow > or - to 0 thus we must

maintain flow conservation on the links in the cycle formed in
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the tree by this entering link. Since we can't have negative flows

the link that goes to zero first leaves. More than one link could

have its flow go to zero. To resovle ties and avoid the possibility

of cycling an implicit perturbation method is used such that *in

case of tie, the highest link on the downside or the lowest link

on the upside leaves. This is done by saying flow~predlml] must

be < fmin while flow[predl(n]] must be <- fmin.

pivot count +- 1;

n - from;
- tO;

/* First find the deepest node of the from and to node of the enter-

ing link and then check its predlinks for the minimum flow in the

cycle until you get to the same depth as the higher node.

while ( depth[m] > depth[n])

if ( uprm] !- I
if ( flow (predl(m]] < fmin

fmin - flow[predlim]];
rimin m;
cut - 2:

m - pred r- ;

while ( depth~m] < depth(n]

if ( up[n] -- 1 )
if ( flow(predl[n]] <- fmin

fmin - flow[predlin]);
nin - n;
cut - 1;

n - pred(nl;

/* Once you are at the same depth as the higher node move up the
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tree checking for the trrr-',1at- 7 nimuir. flow on pred links

until you come to the joining node of the cycle.

wt::e n !.-' i )

Upn
if 4 uprn] -- 1
if f flow~predl[n]] <- fmin

fmin - flow[predlin]];
nmin - n;
Cut - 1;

n - redIn];

if ( upim] !- 1 )
if ( flow[predlim]] C fmin

fmin - flow(predl(m]];

nmin - m;
c - 2;

m - predim];

Jnode - m;
linkout - predl~nmin];

if (level--6)
printf ("Linkout is %d\n",linkout);

flow[linkin] - fmin;
n - from;
m - to;

/* Once we have decide which link leaves we update the flows on

each link in the cycle mentioned above. By starting alterna-

tively at the from and then the to node of the entering link

we add the fmin flow to down links on the down side and sub-

tract fmin from the up links on the upside. Then do the same

thing for the predl of the pred node of n and m until we come

to the same node (joining node of the cycle). Finally set the

flow of the entering link to fmin (done above actually ) '1

while ( n I- jnode
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if ( uF[n] -- 1
flow~predl(n]] -- fmin;

else
flowlpredl(n]] + fmin;

n -pred[n];

while ( !n- jnode

if ( up[m] - 1
flow(predl[m]] 4- fmin;

else
flowipredl[m]] -- fmin;

m - pred[m];

* *

* UPDATING AND REHANGING THE TREE
* *

/* If the link leaving was on the downside A is the from node of

the entering link and B is the to node else A is the to node

and B is the from node. Then find C, D, E, F, 11, 12 (see var-

iable glossary for definitions) and rehang the tree.

if ( cut -- I

A - from;
B - to;

else

A - to;
B - from;

flag2: C - predIA];
m - C;
while ( ml- A

last M-

m - thread~m];

F last;
11 linkin;
12 - pred![A,; F-3
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oldepth - depth[A]:

chdepth - dep:h[B] + 1 - oldepth;

/* Update the up variable of A */

if ( cut --1 )
if ( up[A] -- 0
up[A] - 1;

if C cut --2
if up(A] -- 1

up!A] - 0;

/* Determine the change in the dual prices

if ( up[A] -- 1 )
chdual - dual[B] - cost[ll] - dual[A];

else
chdual - dual[B] + cost[ll] - dual(A];

m - A;

flag: last - m;

/* Update the dual and depth of A and its descendants

duallm] - chdual:
dethIm) +- chdepth;
m - threadm];
if ( depth[m] > oldepth
goto flag:

/* Update the thread Cf

D - last;
E - thread[D]:
thread[F] - E;
thread[D] - thread[B;]
thread(B] - A;

/* Update the prod and predl of A */

pred(A] - B;

predl(A] - 11;

/* If the predl of A is the link that's leaving we're done

rehanging the tree. If not treat the predl of A like the

link thats entering and repeat the process '/

if ( 12 1- linkout
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linkin -12;

B -A;

A -C;

if (B -- bnodelliikin2)
cut - 1:

else
cut - 2;

goto flag2;

fimin - M;

if Clevel--6

printf("Node Source Depth Thread Pred Predi Up Dual\n\n");
for (Z-1; z<-tt; ++z

FrIrntf (" 3:!6d*7d7d6d%5d%d8d\r.',

zisource~z],depth[z],thread~z],predlzj ,predliz].up~z),dual[z]);

f**~********~*.**Last Caxd of Vivot-out *~***~********.**
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*include "rmacro.h"

/****"****** Body of Convert program **************************/

Convert converts the double precision representation of job times
and lengths into an integer display

convert (nn,ii)

/*I*********** Declare Global Variables *********************/

-u.ble rn; /* the actual job start time or length *1

int ii; /* desired return parameter (month,day,hour,minute) *1

........ **.....* Declare Local Variables ******************************/

int d!,d2,d3,d4,date[4];

double f4;

/* convert the month */
dl - nn 100000;
date[l] - di/100000

/* convert the hour */
d2 - dl % 100000:
date[2] - d2/1O00;

/* convert the minutes /
d3 - d2 % 1000;
date3. - (d3"144)/60;

d4 - date[3] % 100;
f4 - (d4"1000);
f4 - f4/100000.0:
f4 - f4*60;

date[3] - date[3] - d4 + f4/1;

return (date~ii]};

/*************** Last card of Convert *****************************
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#include "macro.h"

~~ Body of Assign program/******* ******** Boyo*sinporm********************************,***

Assign actually assigns job vectors to a pilot based on the simplex solution

assign ()

******* *** ****** Declare Global Variables ************************/

extern JV job[],*Jobpointer([:

extern PV pilot[);

extern int bflow[ ,bogus labeli ] ,gold[] ,level, jobleft, q;

extern int imp,bnode[),N,point[i,flow[],cost(];

/******************* Declare Local Variables ***************************/

int pp,trip-O,date[4],i,j-O,kx,z; /* utility variables */

int nflow-0; /* tracks bogus assigned arc flows */

double stop; /* stop time of a job */

jobleft - 0;

if (level -- 7)

printf ("\n\n");
printf ("Nonzero flow for each link is:\n\n");

for ( i1-; i <- N; ++i

if i !- N
z - gold[i);
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else
z - 0;

for (k-point~i]; k<-point[i+l]-l; ++k

bflow~k] - 0;

/* assign the job (bnode) the pilot (anode) ~
if (flow[k] > 0 && imp -1

x -bnode[k] - N;
+- 1;

if (level--7)
printf ("%6d.%2d%3d",i,x,flowjk]);

while (flowik) ! 0

-f ( x q

z +- 1
pilotli].assignediz] - Job[xl:
pilot (iI.assignedlz] .number - x
pilot til.assigned~z] .next - Ipilotji] .assignedjz+1I:
goldciJ - z

flow~k] -- 1;

if ( i--N)
nf low +- 1;

/* keep track of bogus assigned jobs with nf low *
if ( i--N G& x I- q &A bogus label(pilozli].assiqned(z].nwuberI -1

flow[kJ - nflow:
jobleft - 1;

nflow - 0;

if ( j > 4

if (level--7)
printf ("\n\n"1;
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/* forrratting for printing the schedule ~
if (level--7)

printf ("\n\n');
printf ("Pilot# Job# Start Stop\n\n");

for ( i-i; ± <- N; ++i

while (jobpointeri->number !- 0

for (pp-point [ii: pp<-point[i+l]-l: ++pp)

if (bnode(pp]-N -- Jobpointerli]->nunber

bflowlpp] = 1;

jobpointer [±3- jobpointer [±3 ->zext;

jobpointer Li] - &pilot [ii .assigned[l]:

if (level-1)
for ( i-1; i <- N; ++i

while (jobpointerli]->number 1- 0

printf ("%3d%l0d", i, jabpointer (±1->number);

for (k-1; k<-3; ++k)
date~k]-convert(job~pointerli]->start,k):

flu;: if(date[31 (100)
printf C" 00%2d",date[33);

else if Cdate(3] <1000 && date[3]>- 100
printf C" %3d",date131);

else
printf C" %4d",datel3l);

if (trip !-1)
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stop - jobJpointer~i]->length + jobpointerfi]->Start;

for (k-i; k<-3; ++k)
datelk]=convert (stop,k);

trip - 1;

goto I lug;

else

trip - 0;

prirltf("\r"):

job~pointer Ii] job~pointer (i] ->next;

jobJ:rtri poti.asnel;

/''~~t~******Last Card of Assign ***********e../

II
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# include "macro.h"

/********* Body of Zero pilotvector Program ******************/

This routine zero outs all assigned jobs to bogus in preparation for
the next transportation problem.

zeroypilotvector (y)

int y:

/ * *** ** * Declare Global Variables *

extern int N;

extern PV pilot[I;

extern JV *Job-pointer[];

extern int gold(],bogus label[];

/* zero out the bogus assigned jobs */

while ( pilot[y].assignedll].number !- 0

if (pilot[y].assiqned(lJ.label - 1)
boguslabel [pilot [yJ .assigned l] .nwber] - 1;

delete (y,pilot [y) .amsigued l]);

jobpointer[y] - &pilot[y].assigned(l];

/************ Last Card of Zeropilotvector ***********************/
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#include "macro.h"

/***************~****** Body of Add Program *****************************/

Add is a routine to add a job vector to a pilot's assigned list

add(pil,vec)

/******************** Declare Global Variables **************************/

int pil; /* the pilot to add the job to */

JV vec; /* the job vector to add */

/ *********************** Declare Local Variables ************************

int k,i;

extern PV pilot [];

extern Int gold; ;

i - pil; k-l;

/* find last assigned job and add new job after it */
while C pilot[i].assigned[k].number !- 0)
{

k - 1;
pilot[i].assigned[k].next- &pilot[i].assigned~k+l]:

pilot(i].assigned(k] - vec:
pilotki].assigned[k].next- &pilot (i.auuiqnedlk+l];
gold(i] - k;

/******************* Last card of Add ** *
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#include "macro.n"

/*****************.**** Body of Delete Program ******** ************/

Delete removes an assigned job from a pilot's list of jobs

delete(jock, jvec)

*/******************* Declare Global Variables ****************************/

int jock; /* the pilot to remove the job from **

JV jvec; /* the jobvector to remove from the above pilot /

/******************* Declare Local Variables ******************************/

int i,k,out;

extern int gold[],M;

i - jock; k-1; out - M;

/* find the given job and delete it */
for ( k-1: k<-gold(i]: ++k)

if ( pilot(i].assigned[k].number -- jvec.number)
out - k;

if Ck >- out)

pilot i].assigned[k] - pilot(il.assigned[k+l];
pilot i].assigned(k].next - Spilot i].assigned[k+l];

I

gold~i] --I;

/************************** Last card of delete ******************************/
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include "itacro.h"

/-****************** Body of Swap Program ****************************/

Swap takes as an input a "bogus" assigned job and attempts to swap
it to a "real" pilot. If unable to do so the job is labeled to "bogus"
so that the algorithm may continue. For details of the algorithm see
section 2.2.3

swap(p)

/* The entering parameter p is the pilot to swap jobs from (bogus) */

int p;

I**"*'**''* Declare Global Variables ***************************-

extern int swapcount,nogo,flow),point[],gold[i,level;

extern int bnode[J,q,N,M, feaslinksJ:

extern JV job[J,*jobpointer[];

extern PV pilot[];

S******************** Declare Local Variables *************************

int repeatjcb; /* tracks whether this job ha been swapped out before */

int skip; /* indicates to skip a pilot already swap(ped a job on this

int track; /* indicates that an eligible swap pilot has been found */

int noswap; /* general marker indicating no swap to a pilot */

int y,i,f,k,old-M,a,xd,c,first,pj,sj; /* utility */

int bestswap[NJ]; /* indicates the best swap candidate to a particular
job */

int oldcost: /* tracker for best cost */

/* local struct */
ZV olds:

nogo - 1;

/* Loc?, at all bogus assigned jobs and swap them out /
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while ( jobpcinterlp]->number !- 0

sj- jobpointer [p]->number;
oldcost - 0: old - M; track -0; noswap - 0;

/* If the job is not the sink job and the job is not labeled swap it out '/

if ( sJ !- q && job pointer(p]->label !- 1)

if ( level--IC)
printf ("We are swapping out job %d from pilot %d\n",
jobpointer [p] ->numberp)•

bestswaptsjl - p;

for (i-1; i<N; ++i

if ((noswap > 0 && track-- 1 ) II

(track--O & noswap--O

skip - 0;

if ( skip "- 0

/* find the pilots qualified to do the bogus assigned job '1
f -1; k -1;
while ( pilot[i].type[k] <- Job~sJ].type

&A pilot~i].type~k] 1- 0)

if (pilot[i].type[k] -- job[sj].type

noswap - 0;
if ( level - 10
printf ("Pilot %d is qualified to do bogus job %d\n\n",
i,sJ);

track -1;

I* of these pilots see which of their assigned jobs interfere with the
bogus assigned job */

while ( Jobpointer(i]->number 1- 0
if ( Jobpointer i]->number I- q
I

pJ - Job_pointeriIl->number;
y -1:
while ( Jobiaj].conly] <- pJ && Joblsj].cony] 1- 0)

if ( pJ - JoblsJ].con[y])

if (level - 10
printf("Pilot %d's job %d interferes with the swap\n\r

/* as long as the intefering job(s) are not labeled to a pilot ( in which case
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they cannot be sdapped ) see if a feasible link ( an available pilot ) exists
for the interfering job */

if ( job pointer[i)->label !- 1)

if ( feaslinks[pj] !- I

noswap +-l;
if ( level -10
{

printf("In addition there is no one to take thi!
printf ("His cum noswap is %d\n",noswap);

}

elseI

noswap - M;
if ( level --10
printf ("We can't swap with pilot %d since his job %c

I

pilot[i].swapout~f) - pj;
pilot(iJ.swapoutlf+l] - 0:
if ( level-,O)
printf("If pilot Od does bogus job %d he'll have to drc
f +- 1;

y +-l;}I

jobypointer[i] - job_pointerti]->next;

)

/* Swap out pilots with the least number of interfering jobs. In case of ties
select the pilot that has the best price for the bogus assigned job '/

if ( noswap <- old A& noswap<M)
I

if ( pilotlil.cost[k] < oldcostII
oldcost - pilottil.costik);
old - noswap;
bestswapfsj] - i;
if ( level--lO)
printf("The best pilot so far to swap job %d with is pilc

else
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if ( track -- 1)
noswap - old;

else
noswap - 0;

if (level --10)
printf("Can't swap pilot %d jobs with pilot %d\n\n",i,pi,

)

k +- 1;

)

Jobpointer[i] - &pilot[il.assigned[l];

}

d - bestswapfsj];

/I if no one available to do the bogus assigned job label it to bogus "/
if (d - p

if (level-lO)
printf ("We are labeling job %d to pilot %d\n\n",sj,

d);
jobpointer[p]->label - 12

/* otherwise label the job to the best candidate found */
if ( d !- p

if (level--0)
printf("We are swapping out with pilot %d\n\n",d);

swap count +- 1;

repeatjob-0; a - 1;
while ( pilot[p].assignedla.number I- 0

if ( pilot[p].assigned[a].number -- sj && repeatjob !- 1)
C

pilot~pl.assignedfa].label - 1;
olds - pilot(p].assigned(a];
delete(p,oldsl} V.,
add(d,olds):
repeatjob - 1;

a *- 1:
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nogo - 0;
c - 1; first - 0;

/* assign all of the intefering jobs to bogus ~
while ( pilotidJ.swapout[c] !- 0

if (level--lO)
printf('We are swapping out pilot %d job %d\n\n",d,pilot[d].swapout[c]);
f - 1;
while ( pilotid].assignedfJ.aurber !-0)

if (pilot~dJ .assigned~f) .number -=pilot (d] .swapout [c])

olds - pilot[d].assigned[f);
delete (d, olds);
add (p, olds) ;
for(i- point~p]; i<pointlp+l]: ++i)

if (bnodelEi] =-N+olds number)

flow~i] +- 1;
break;

f +- 1;

c +- 1:

jobpointer [p3- jobpointer [p3 ->next;

jobpointer[pI - &pilot~p] .asSigned[l);

1' adjust the flow to reflect the bogus assigned jobs *
for ( x-point~pJ: x<-pointip+11-l; ++x
flowIX) 0:

while (jobpointer(p)->nmber 1- 0

flow(jobpointer(p-number + poiiat[pI -11 *- 1;
jobpointer (p3 - jobpointer[p3 ->next;

job-pointer~p) - &pilot~p] .assigned~l];

if C level -- 10

for 1-2 i1 i<-N; *+i)
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printf ("\n\n"t)
priritf ("Pilot %d's jobs are now:\n\n",i);
while(jobpointer~i)->number !- 0)

printf ("%3d", Jobypointer Ii]->nuznber);
jobpointeri] - jobyoiiter CiJ->next;

jobpointer[i] - pilot(i] .assigned[l);

~~~~ ~~~last card of swap **************

F-51



#include "macrc.h"

/*****°'**************** Body of Reheap Program ***********************

Reheap updates the "heap" vector following the reassignment of a job in
the improve phase.

reheap(jo,pi)

/**** **~~********** * Declare Global Variables *********** *

int jo; /* the job number to reheap *1

int pi; / the pilot who now has the job *1

* * ***** Declare Global Variables ************************/

extern JV job[];
extern HP heap[], *hp;
extern nt point(],bnode[],cost[],N;

/ *******~~~********** Declare Local Variables **************** ******
int jj,d,k;
/* initialize **

jj - jo;
d - pi:

heapljj].pilot - d;

/* assign new arc to the heap struct *I
'ci (k-point[d]; k<-point[d+l]-l; ++k)

if (bnode[k]-N - Ji)

heap[JJl.arc -k;
break;

/* assign new cost to the heap struct */
for (k-1; k<-pilotid].noxt; ++k)

if (pilot d] .type[k]--job[tj] .type)

heap[jjl.cost - pilotid].cost[k];
break;

*/********************** Last card of Reheap *
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#include "macro.h'

*************************** Body of Impr Program ************************

lmpr is the routine to improve the best ( hopefully feasible ) solution found
as of yet by the simplex and swap routines. The modified two opt procedure
used is described in section 2.5

impr(jj,ppcs)

/************************* Declare Global Variables **********************/

Ant jj; /* the job we seek to improve the price of */

int pp; /* the pilot currently assigned the job */

int CS; /* the current price gained for a job */

************************** Declare Global Variables ****************/

extern ino imp count,q, level,N, imp;
extern PV pilot[];
extern JV JobIJ,*Job pointer[];

/************************ Declare Local Variables ***********.*****I

int pj,i,jk,n,m; /* utility variables */

int chcost; /* the change in cost with a given swap */

int bestcost; /* the bestcost found for a given swap *1

int noswap; /* indicates that noswap is possible */

int jobswap[ND],swjb[ND]; /* both indicate the jobs that must swap to
complete an improve swap */

int bestswap[NJI; /* indicates the best pilot to swap for /

int pilot check; /* mrker indicating a pilot has been checked for a swap */

int cumswap; /* the cumulative swap number for a given improvement */

/* struct '1
JV jvc;

/* initialize parameters */

for (i -0; i<ND; ++i)
(

jobswap(ij - 0:
SWAMF - ;
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ch = - 0:

bestcost - 0;
bestswap[jj] - pp;

/* find each pilot qualified to do a given job */
for (i1; i<N: ++i)

cumswap - 0;
noswap - 0;
pilot check - 0;
for (j-l: j<-pilot[i].next; ++j)

if ( pilot[i].type[j] -- Job[jJJ.type)

pilot check - 1;
if ( level-- 10)
printf ("Pilot %d is qualified to do job %d\n\n", i, JJ);

/I for each pilot qualified to do a given job see which of his assigned jobs
interfere with it

while ( jobpointer[i]->nu-le: !- )
if ( jobpointexli]->number !- q)

k -1;
pj - job pointerli]->number;
while ( JoblJI].eon(k) <- pJ &8 JoblJJ].con[k] 1- 0

if ( JobiJJI.cont)k) -- pJ

cumswap +- 1;
jobswaplcumswap] - pj;
if ( level - 10
printf (" Pilot %d's job %d interferes with job %d\n\n"

,i, pj, jJ):

k +- 1; Im
job.pointerIi] - Jobpointer[iJ->next;

jobpointerti] - &pilot[i].assigned[l];

/* see if the pilot who is dropping the improve job can pich up all of these
interfering jobs

while ( Jobpointer(pp1->number !- 0
if ( Job_pointer~ppl->number !-q 1''

pJ - Job pointer[pp]->number;
if pJ !- JJ
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n-1;
while ( JobswapinJ ! C

k -1;
m - jobswap[n);
while Cjob~pj).ccn~k) <- mn 66 job~pjJ.conik] ! 0

if (job(pj).con[k) -- mn

if Clevel -- 10)
printf ("TOO BAD, pilot %d can't do pilot %d's job %d, therf

noswap -1;

k +-1;

job pointer Ipp] job pointer Eppl ->next;

Jobpointerfpp] - Gpilot[ppj .assiqned(lJ:

/* if he can, see if this will improve the objective, if so keep track of it *
if (noswap !- 1

chcost -0:

n - 1;
while 4jobswaptn] 1- 0

m - jobswap~n]:
for (k-1; k<-pilot~i].next; ++k

if ( pilotti).typelk] -- job~mJ.type)

ehcost -- pilotlilbcost(kJ:
break:

for (k-i; k<-pilot[pp].next, ++k
if Cpilot~ppl.type[k) -- job~m].type)

chcost +- pilot(pp].cost~k]:
break;

n +- 1;

chcost 4- (pilotci].costcj]-cs);
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if Clevel -- 10
prir.tt ("The chcost if pilot %d picks up job %d is %d\n\n",

if ( ccost bstcou

ifchcost < bestcost

bestswapjj; - i
n -1:
while ( job3SaPtnl !- 0

swjb[ri] - jobawap~n):
n ~1

while Cswjb~nJ 1- 0)

swdbrnl -0;

if (pilot check -1

j _ pilotlil.next;

n-1;
while Cjobswaplnl 1- 0

jobswapinl - 0;
n 4- 1

/* swap out with the beat chariqecolt

if (bestswap(jj] I- pp

imp_ count 4- 1;

i -bestswap~jj]:
if Clevel -- 10
pzintf ("Wetre swapping out with pilot td\n\n", L);

n-1;
while (swjb(n] 1- 0

m -1:
while (pilot~ji].assignedjm].nwhber I- swjbin] 66 m < NJ)
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m +- 1:
jvc - pilotli].asuignedtm];
delete~i, jvc):
add (pp1 jvc);
reheap(swjb [nJ,pp);
n -1

m -1;

while (pilot~ppl.assigied[ml.flumber jj mi£&i < NJ)
mn +- 1

jvc - pilot(pp].assined[m];
add~i, jvc);
reheap (jj, i);
delete (pp, jvc);
imp -1

else

4f ( level -- 10

printf ("No good swaps for job %d\n\n",jj):

/'~~~'~~ Last card of Imyx**************
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